{"title":"论k模空间上CM线束的正性","authors":"Chenyang Xu, Ziquan Zhuang","doi":"10.4007/annals.2020.192.3.7","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the CM line bundle on the K-moduli space, i.e., the moduli space parametrizing K-polystable Fano varieties. We prove it is ample on any proper subspace parametrizing reduced uniformly K-stable Fano varieties which conjecturally should be the entire moduli space. As a corollary, we prove that the moduli space parametrizing smoothable K-polystable Fano varieties is projective. During the course of proof, we develop a new invariant for filtrations which can be used to test various K-stability notions of Fano varieties.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"On positivity of the CM line bundle on K-moduli spaces\",\"authors\":\"Chenyang Xu, Ziquan Zhuang\",\"doi\":\"10.4007/annals.2020.192.3.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the CM line bundle on the K-moduli space, i.e., the moduli space parametrizing K-polystable Fano varieties. We prove it is ample on any proper subspace parametrizing reduced uniformly K-stable Fano varieties which conjecturally should be the entire moduli space. As a corollary, we prove that the moduli space parametrizing smoothable K-polystable Fano varieties is projective. During the course of proof, we develop a new invariant for filtrations which can be used to test various K-stability notions of Fano varieties.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2020.192.3.7\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2020.192.3.7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On positivity of the CM line bundle on K-moduli spaces
In this paper, we consider the CM line bundle on the K-moduli space, i.e., the moduli space parametrizing K-polystable Fano varieties. We prove it is ample on any proper subspace parametrizing reduced uniformly K-stable Fano varieties which conjecturally should be the entire moduli space. As a corollary, we prove that the moduli space parametrizing smoothable K-polystable Fano varieties is projective. During the course of proof, we develop a new invariant for filtrations which can be used to test various K-stability notions of Fano varieties.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.