与新冠肺炎传播相关的反应扩散模型的最优控制

IF 2 2区 数学 Q1 MATHEMATICS
P. Colli, G. Gilardi, G. Marinoschi, E. Rocca
{"title":"与新冠肺炎传播相关的反应扩散模型的最优控制","authors":"P. Colli, G. Gilardi, G. Marinoschi, E. Rocca","doi":"10.1142/s0219530523500197","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the well-posedness and optimal control problem of a reaction-diffusion system for an epidemic Susceptible-Infected-Recovered-Susceptible (SIRS) mathematical model in which the dynamics develops in a spatially heterogeneous environment. Using as control variables the transmission rates $u_{i}$ and $u_{e}$ of contagion resulting from the contact with both asymptomatic and symptomatic persons, respectively, we optimize the number of exposed and infected individuals at a final time $T$ of the controlled evolution of the system. More precisely, we search for the optimal $u_{i}$ and $u_{e}$ such that the number of infected plus exposed does not exceed at the final time a threshold value $\\Lambda$, fixed a priori. We prove here the existence of optimal controls in a proper functional framework and we derive the first-order necessary optimality conditions in terms of the adjoint variables.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal control of a reaction-diffusion model related to the spread of COVID-19\",\"authors\":\"P. Colli, G. Gilardi, G. Marinoschi, E. Rocca\",\"doi\":\"10.1142/s0219530523500197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the well-posedness and optimal control problem of a reaction-diffusion system for an epidemic Susceptible-Infected-Recovered-Susceptible (SIRS) mathematical model in which the dynamics develops in a spatially heterogeneous environment. Using as control variables the transmission rates $u_{i}$ and $u_{e}$ of contagion resulting from the contact with both asymptomatic and symptomatic persons, respectively, we optimize the number of exposed and infected individuals at a final time $T$ of the controlled evolution of the system. More precisely, we search for the optimal $u_{i}$ and $u_{e}$ such that the number of infected plus exposed does not exceed at the final time a threshold value $\\\\Lambda$, fixed a priori. We prove here the existence of optimal controls in a proper functional framework and we derive the first-order necessary optimality conditions in terms of the adjoint variables.\",\"PeriodicalId\":55519,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530523500197\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530523500197","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了在空间异质环境中动力学发展的流行病易感性感染恢复易感性(SIRS)数学模型的反应扩散系统的适定性和最优控制问题。使用与无症状和有症状的人接触引起的传染病的传播率$u{i}$和$u{e}$分别作为控制变量,我们优化了系统受控进化的最终时间$T$时暴露和感染个体的数量。更准确地说,我们搜索最优的$u_{i}$和$u_{e}$,使得感染加暴露的数量在最后一次不超过先验固定的阈值$\Lambda$。我们在适当的函数框架中证明了最优控制的存在性,并导出了伴随变量的一阶必要最优性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of a reaction-diffusion model related to the spread of COVID-19
This paper is concerned with the well-posedness and optimal control problem of a reaction-diffusion system for an epidemic Susceptible-Infected-Recovered-Susceptible (SIRS) mathematical model in which the dynamics develops in a spatially heterogeneous environment. Using as control variables the transmission rates $u_{i}$ and $u_{e}$ of contagion resulting from the contact with both asymptomatic and symptomatic persons, respectively, we optimize the number of exposed and infected individuals at a final time $T$ of the controlled evolution of the system. More precisely, we search for the optimal $u_{i}$ and $u_{e}$ such that the number of infected plus exposed does not exceed at the final time a threshold value $\Lambda$, fixed a priori. We prove here the existence of optimal controls in a proper functional framework and we derive the first-order necessary optimality conditions in terms of the adjoint variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信