函数上标量回归结构中模态函数的条件密度估计&随机缺失的局部线性方法

IF 1.1 Q3 ECONOMICS
Wahiba Bouabsa
{"title":"函数上标量回归结构中模态函数的条件密度估计&随机缺失的局部线性方法","authors":"Wahiba Bouabsa","doi":"10.15611/eada.2023.1.02","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this research was to study a nonparametric estimator of the density and mode function of a scalar response variable given a functional variable, when the observations are i.i.d. This proposed estimator is given by combining Missing At Random (MAR) with the local linear approach. Finally, a comparison study based on simulated data is also provided to illustrate the finite sample performances and the usefulness of the local linear approach with MAR to the presence of even a small proportion of outliers in the data.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"27 1","pages":"17 - 32"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Estimating of the Conditional Density with Application to the Mode Function in Scalar-On-Function Regression Structure: Local Linear Approach with Missing at Random\",\"authors\":\"Wahiba Bouabsa\",\"doi\":\"10.15611/eada.2023.1.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this research was to study a nonparametric estimator of the density and mode function of a scalar response variable given a functional variable, when the observations are i.i.d. This proposed estimator is given by combining Missing At Random (MAR) with the local linear approach. Finally, a comparison study based on simulated data is also provided to illustrate the finite sample performances and the usefulness of the local linear approach with MAR to the presence of even a small proportion of outliers in the data.\",\"PeriodicalId\":11499,\"journal\":{\"name\":\"Econometrics\",\"volume\":\"27 1\",\"pages\":\"17 - 32\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15611/eada.2023.1.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15611/eada.2023.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了给定函数变量的标量响应变量的密度和模态函数的非参数估计。该估计是将随机缺失(Missing At Random, MAR)方法与局部线性方法相结合得到的。最后,还提供了基于模拟数据的比较研究,以说明有限样本的性能以及局部线性方法与MAR的有用性,即使数据中存在很小比例的异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Estimating of the Conditional Density with Application to the Mode Function in Scalar-On-Function Regression Structure: Local Linear Approach with Missing at Random
Abstract The aim of this research was to study a nonparametric estimator of the density and mode function of a scalar response variable given a functional variable, when the observations are i.i.d. This proposed estimator is given by combining Missing At Random (MAR) with the local linear approach. Finally, a comparison study based on simulated data is also provided to illustrate the finite sample performances and the usefulness of the local linear approach with MAR to the presence of even a small proportion of outliers in the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信