{"title":"混合对流和风/波强迫下海洋表层湍流垂直速度的预测","authors":"A. Gargett","doi":"10.1175/jpo-d-22-0213.1","DOIUrl":null,"url":null,"abstract":"\nTurbulence in the ocean surface layer is forced by a mixture of buoyancy, wind, and wave processes that evolves over time scales from the diurnal scale of buoyancy forcing, through storm time scales, to the annual cycle. This study seeks a predictor for root-mean-square w (rmsw), a time and surface layer average of turbulent vertical velocity w measured by bottom-mounted vertical-beam acoustic Doppler current profilers, in terms of concurrently measured surface forcing fields. Data used are from two coastal sites, one shallow (LEO, 15-m depth) and one deeper (R2, 26-m depth). The analysis demonstrates that it is possible to predict observed rmsw with a simple linear combination of two scale velocities, one the convective scale velocity familiar from the atmospheric literature, the other a scale velocity wS representing combined wind and wave effects. Three variants are considered for this latter scale velocity, the wind stress velocity alone and two forms using both and US, a Stokes velocity characteristic of the surface wave field. At both sites, the two-parameter fit using alone is least accurate, while fits using the other two variants are essentially indistinguishable. At both sites, the coefficient multiplying is the same, within error bounds, and within the range of previous observations. At the deeper site, the coefficient multiplying the wind/wave scale velocity wS is approximately half that at the shallow site, a difference here attributed to difference in wave character.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Turbulent Vertical Velocity in the Ocean Surface Layer under Mixed Convective and Wind/Wave Forcing\",\"authors\":\"A. Gargett\",\"doi\":\"10.1175/jpo-d-22-0213.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nTurbulence in the ocean surface layer is forced by a mixture of buoyancy, wind, and wave processes that evolves over time scales from the diurnal scale of buoyancy forcing, through storm time scales, to the annual cycle. This study seeks a predictor for root-mean-square w (rmsw), a time and surface layer average of turbulent vertical velocity w measured by bottom-mounted vertical-beam acoustic Doppler current profilers, in terms of concurrently measured surface forcing fields. Data used are from two coastal sites, one shallow (LEO, 15-m depth) and one deeper (R2, 26-m depth). The analysis demonstrates that it is possible to predict observed rmsw with a simple linear combination of two scale velocities, one the convective scale velocity familiar from the atmospheric literature, the other a scale velocity wS representing combined wind and wave effects. Three variants are considered for this latter scale velocity, the wind stress velocity alone and two forms using both and US, a Stokes velocity characteristic of the surface wave field. At both sites, the two-parameter fit using alone is least accurate, while fits using the other two variants are essentially indistinguishable. At both sites, the coefficient multiplying is the same, within error bounds, and within the range of previous observations. At the deeper site, the coefficient multiplying the wind/wave scale velocity wS is approximately half that at the shallow site, a difference here attributed to difference in wave character.\",\"PeriodicalId\":56115,\"journal\":{\"name\":\"Journal of Physical Oceanography\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jpo-d-22-0213.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-22-0213.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Predicting Turbulent Vertical Velocity in the Ocean Surface Layer under Mixed Convective and Wind/Wave Forcing
Turbulence in the ocean surface layer is forced by a mixture of buoyancy, wind, and wave processes that evolves over time scales from the diurnal scale of buoyancy forcing, through storm time scales, to the annual cycle. This study seeks a predictor for root-mean-square w (rmsw), a time and surface layer average of turbulent vertical velocity w measured by bottom-mounted vertical-beam acoustic Doppler current profilers, in terms of concurrently measured surface forcing fields. Data used are from two coastal sites, one shallow (LEO, 15-m depth) and one deeper (R2, 26-m depth). The analysis demonstrates that it is possible to predict observed rmsw with a simple linear combination of two scale velocities, one the convective scale velocity familiar from the atmospheric literature, the other a scale velocity wS representing combined wind and wave effects. Three variants are considered for this latter scale velocity, the wind stress velocity alone and two forms using both and US, a Stokes velocity characteristic of the surface wave field. At both sites, the two-parameter fit using alone is least accurate, while fits using the other two variants are essentially indistinguishable. At both sites, the coefficient multiplying is the same, within error bounds, and within the range of previous observations. At the deeper site, the coefficient multiplying the wind/wave scale velocity wS is approximately half that at the shallow site, a difference here attributed to difference in wave character.
期刊介绍:
The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.