若干线性丢番图方程的系统,类似于正方形

IF 0.5 3区 数学 Q3 MATHEMATICS
Yuya Kanado, Kota Saito
{"title":"若干线性丢番图方程的系统,类似于正方形","authors":"Yuya Kanado, Kota Saito","doi":"10.4064/aa220622-19-1","DOIUrl":null,"url":null,"abstract":"This study investigates the existence of tuples $(k, \\ell, m)$ of integers such that all of $k$, $\\ell$, $m$, $k+\\ell$, $\\ell+m$, $m+k$, $k+\\ell+m$ belong to $S(\\alpha)$, where $S(\\alpha)$ is the set of all integers of the form $\\lfloor \\alpha n^2 \\rfloor$ for $n\\geq \\alpha^{-1/2}$ and $\\lfloor x\\rfloor$ denotes the integer part of $x$. We show that $T(\\alpha)$, the set of all such tuples, is infinite for all $\\alpha\\in (0,1)\\cap \\mathbb{Q}$ and for almost all $\\alpha\\in (0,1)$ in the sense of the Lebesgue measure. Furthermore, we show that if there exists $\\alpha>0$ such that $T(\\alpha)$ is finite, then there is no perfect Euler brick. We also examine the set of all integers of the form $\\lceil \\alpha n^2 \\rceil$ for $n\\in \\mathbb{N}$.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A system of certain linear Diophantine equations\\non analogs of squares\",\"authors\":\"Yuya Kanado, Kota Saito\",\"doi\":\"10.4064/aa220622-19-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the existence of tuples $(k, \\\\ell, m)$ of integers such that all of $k$, $\\\\ell$, $m$, $k+\\\\ell$, $\\\\ell+m$, $m+k$, $k+\\\\ell+m$ belong to $S(\\\\alpha)$, where $S(\\\\alpha)$ is the set of all integers of the form $\\\\lfloor \\\\alpha n^2 \\\\rfloor$ for $n\\\\geq \\\\alpha^{-1/2}$ and $\\\\lfloor x\\\\rfloor$ denotes the integer part of $x$. We show that $T(\\\\alpha)$, the set of all such tuples, is infinite for all $\\\\alpha\\\\in (0,1)\\\\cap \\\\mathbb{Q}$ and for almost all $\\\\alpha\\\\in (0,1)$ in the sense of the Lebesgue measure. Furthermore, we show that if there exists $\\\\alpha>0$ such that $T(\\\\alpha)$ is finite, then there is no perfect Euler brick. We also examine the set of all integers of the form $\\\\lceil \\\\alpha n^2 \\\\rceil$ for $n\\\\in \\\\mathbb{N}$.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa220622-19-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220622-19-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了整数的元组$(k,\ell,m)$的存在性,使得$k$,$\ell$,$m$,$k+\ell$、$\ell+m$、$m+k$、$k+\ell+m$都属于$S(\alpa)$,其中$S(\alpha)$是$n\geq\alpha^{-1/2}$的形式为$\lfloor\alpharor$的所有整数的集合,$\lfloor x\lfloor$表示$x$的整数部分。我们证明了$T(\alpha)$,所有这类元组的集合,在Lebesgue测度的意义上,对于(0,1)\cap\mathbb{Q}$中的所有$\alpha,以及对于(0,1)$中的几乎所有$\aalpha,都是无限的。此外,我们证明了如果存在$\alpha>0$,使得$T(\alpha$)是有限的,那么就不存在完美的欧拉砖。我们还研究了$n\in\mathbb{n}$的形式为$\lceil\alphan^2 \ rceil$的所有整数的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A system of certain linear Diophantine equations on analogs of squares
This study investigates the existence of tuples $(k, \ell, m)$ of integers such that all of $k$, $\ell$, $m$, $k+\ell$, $\ell+m$, $m+k$, $k+\ell+m$ belong to $S(\alpha)$, where $S(\alpha)$ is the set of all integers of the form $\lfloor \alpha n^2 \rfloor$ for $n\geq \alpha^{-1/2}$ and $\lfloor x\rfloor$ denotes the integer part of $x$. We show that $T(\alpha)$, the set of all such tuples, is infinite for all $\alpha\in (0,1)\cap \mathbb{Q}$ and for almost all $\alpha\in (0,1)$ in the sense of the Lebesgue measure. Furthermore, we show that if there exists $\alpha>0$ such that $T(\alpha)$ is finite, then there is no perfect Euler brick. We also examine the set of all integers of the form $\lceil \alpha n^2 \rceil$ for $n\in \mathbb{N}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Arithmetica
Acta Arithmetica 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
64
审稿时长
4-8 weeks
期刊介绍: The journal publishes papers on the Theory of Numbers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信