具有混合非局部条件的比例卡普托分数受电弓微分方程的定性分析

Q3 Mathematics
Bounmy Khaminsou, Chatthai Thaiprayoon, W. Sudsutad, Sayooj Aby Jose
{"title":"具有混合非局部条件的比例卡普托分数受电弓微分方程的定性分析","authors":"Bounmy Khaminsou, Chatthai Thaiprayoon, W. Sudsutad, Sayooj Aby Jose","doi":"10.22771/NFAA.2021.26.01.14","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate existence, uniqueness and four different types of Ulam’s stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers- Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class of nonlinear fractional Pantograph differential equation in term of a proportional Caputo fractional derivative with mixed nonlocal conditions. We construct sufficient conditions for the existence and uniqueness of solutions by utilizing well-known classical fixed point theorems such as Banach contraction principle, Leray-Schauder nonlinear alternative and Krasnosel’ski i’s fixed point theorem. Finally, two examples are also given to point out the applicability of our main results.","PeriodicalId":37534,"journal":{"name":"Nonlinear Functional Analysis and Applications","volume":"26 1","pages":"197-223"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"QUALITATIVE ANALYSIS OF A PROPORTIONAL CAPUTO FRACTIONAL PANTOGRAPH DIFFERENTIAL EQUATION WITH MIXED NONLOCAL CONDITIONS\",\"authors\":\"Bounmy Khaminsou, Chatthai Thaiprayoon, W. Sudsutad, Sayooj Aby Jose\",\"doi\":\"10.22771/NFAA.2021.26.01.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate existence, uniqueness and four different types of Ulam’s stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers- Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class of nonlinear fractional Pantograph differential equation in term of a proportional Caputo fractional derivative with mixed nonlocal conditions. We construct sufficient conditions for the existence and uniqueness of solutions by utilizing well-known classical fixed point theorems such as Banach contraction principle, Leray-Schauder nonlinear alternative and Krasnosel’ski i’s fixed point theorem. Finally, two examples are also given to point out the applicability of our main results.\",\"PeriodicalId\":37534,\"journal\":{\"name\":\"Nonlinear Functional Analysis and Applications\",\"volume\":\"26 1\",\"pages\":\"197-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Functional Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22771/NFAA.2021.26.01.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Functional Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22771/NFAA.2021.26.01.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了Ulam稳定性的存在性、唯一性和四种不同类型,即Ulam-Hiers稳定性、广义Ulam-Hiels稳定性、,一类非线性分数阶受电弓微分方程在混合非局部条件下的比例Caputo分数阶导数解的Ulam-Hiers-Rassias稳定性和广义Ulam-Heers-Rassia斯稳定性。利用著名的经典不动点定理,如Banach收缩原理、Leray Schauder非线性替代和Krasnosel'ski i不动点定理构造了解存在唯一的充分条件。最后,通过两个算例说明了主要结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QUALITATIVE ANALYSIS OF A PROPORTIONAL CAPUTO FRACTIONAL PANTOGRAPH DIFFERENTIAL EQUATION WITH MIXED NONLOCAL CONDITIONS
In this paper, we investigate existence, uniqueness and four different types of Ulam’s stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers- Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class of nonlinear fractional Pantograph differential equation in term of a proportional Caputo fractional derivative with mixed nonlocal conditions. We construct sufficient conditions for the existence and uniqueness of solutions by utilizing well-known classical fixed point theorems such as Banach contraction principle, Leray-Schauder nonlinear alternative and Krasnosel’ski i’s fixed point theorem. Finally, two examples are also given to point out the applicability of our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊介绍: The international mathematical journal NFAA will publish carefully selected original research papers on nonlinear functional analysis and applications, that is, ordinary differential equations, all kinds of partial differential equations, functional differential equations, integrodifferential equations, control theory, approximation theory, optimal control, optimization theory, numerical analysis, variational inequality, asymptotic behavior, fixed point theory, dynamic systems and complementarity problems. Papers for publication will be communicated and recommended by the members of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信