lctvs值函数的sl积分

IF 0.1 Q4 MATHEMATICS
Rodolfo Erodias Maza, Sergio Rosales Canoy
{"title":"lctvs值函数的sl积分","authors":"Rodolfo Erodias Maza, Sergio Rosales Canoy","doi":"10.14321/REALANALEXCH.46.2.0505","DOIUrl":null,"url":null,"abstract":"A function F:[a,b]→X is said to be an SL function if it satisfies the Strong Lusin (SL) condition given as follows: for every θ-nbd U and a set E⊂[a,b] of measure zero, there exists a gauge δ such that for every δ-fine partial partition D={([xi-1,xi],ti):1≤i≤n} of [a,b] with ti∈E, there exist θ-nbds U1,U2,…,Un such that ∑i=1nUi⊆V and F(xi)-F(xi-1)∈Ui for each i=1,2,…,n. In this paper, we introduce the SL integral of a function taking values on a locally convex topological vector space (LCTVS). Further, we show that this integral is equivalent to a stronger version of the Henstock integral.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON THE SL-INTEGRAL OF LCTVS-VALUED FUNCTIONS\",\"authors\":\"Rodolfo Erodias Maza, Sergio Rosales Canoy\",\"doi\":\"10.14321/REALANALEXCH.46.2.0505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A function F:[a,b]→X is said to be an SL function if it satisfies the Strong Lusin (SL) condition given as follows: for every θ-nbd U and a set E⊂[a,b] of measure zero, there exists a gauge δ such that for every δ-fine partial partition D={([xi-1,xi],ti):1≤i≤n} of [a,b] with ti∈E, there exist θ-nbds U1,U2,…,Un such that ∑i=1nUi⊆V and F(xi)-F(xi-1)∈Ui for each i=1,2,…,n. In this paper, we introduce the SL integral of a function taking values on a locally convex topological vector space (LCTVS). Further, we show that this integral is equivalent to a stronger version of the Henstock integral.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/REALANALEXCH.46.2.0505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/REALANALEXCH.46.2.0505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

如果函数F:[A,b]→X满足下述强Lusin (SL)条件,则称函数F:[A,b]→X是一个SL函数:对于测度为0的θ-nbd U和集合E∧[A,b],存在一个规范δ,使得对于[A,b]的每一个δ-细偏分区D={([xi-1,xi],ti):1≤i≤n},且ti∈E,存在θ-nbd U1,U2,…,Un使得∑i=1nUi≤≤V, F(xi)-F(xi-1)∈Ui,且对于每一个i=1,2,…,n。本文介绍了局部凸拓扑向量空间(LCTVS)上取值函数的SL积分。进一步,我们证明了这个积分等价于Henstock积分的一个更强的版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE SL-INTEGRAL OF LCTVS-VALUED FUNCTIONS
A function F:[a,b]→X is said to be an SL function if it satisfies the Strong Lusin (SL) condition given as follows: for every θ-nbd U and a set E⊂[a,b] of measure zero, there exists a gauge δ such that for every δ-fine partial partition D={([xi-1,xi],ti):1≤i≤n} of [a,b] with ti∈E, there exist θ-nbds U1,U2,…,Un such that ∑i=1nUi⊆V and F(xi)-F(xi-1)∈Ui for each i=1,2,…,n. In this paper, we introduce the SL integral of a function taking values on a locally convex topological vector space (LCTVS). Further, we show that this integral is equivalent to a stronger version of the Henstock integral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信