日本落叶松单板平行股材(PSL)的弯曲和承载强度试验研究

Q2 Engineering
Seichang Oh
{"title":"日本落叶松单板平行股材(PSL)的弯曲和承载强度试验研究","authors":"Seichang Oh","doi":"10.5658/wood.2022.50.4.237","DOIUrl":null,"url":null,"abstract":"This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.","PeriodicalId":17357,"journal":{"name":"Journal of the Korean wood science and technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental Study of Bending and Bearing Strength of Parallel Strand\\n Lumber (PSL) from Japanese Larch Veneer Strand\",\"authors\":\"Seichang Oh\",\"doi\":\"10.5658/wood.2022.50.4.237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.\",\"PeriodicalId\":17357,\"journal\":{\"name\":\"Journal of the Korean wood science and technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean wood science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5658/wood.2022.50.4.237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean wood science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5658/wood.2022.50.4.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

摘要

本研究以落叶松单板为原料,考察了实验用平行股材(PSL)的结构性能。在实验实验室中制造并测试了落叶松单板绞线PSL的原型。弯曲和传力杆承载强度由弹性模量(MOE)、断裂模量(MOR)和基于5%偏移屈服载荷的传力杆承受强度确定。试验结果表明,PSL的平均MOR高于2×4尺寸材,PSL平均MOE低于2×4规格材。MOR和MOE之间存在线性关系。PSL的允许弯曲应力是根据ASTM D2915的规定推导的,并与其他研究进行了比较。平行于晶粒的PSL的榫钉承载强度大约是垂直于晶粒的两倍。对基于各国规范的传力杆承载强度的几种理论计算进行了比较,当传力杆平行于晶粒时,一些理论方程的结果更接近实验结果,但在垂直于晶粒的情况下,差异更大。试验结果表明,用日本落叶松单板股制成的PSL似乎适合作为结构复合材(SCL)的原料,似乎可以用作SCL的原料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study of Bending and Bearing Strength of Parallel Strand Lumber (PSL) from Japanese Larch Veneer Strand
This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean wood science and technology
Journal of the Korean wood science and technology Materials Science-Materials Science (miscellaneous)
CiteScore
5.20
自引率
0.00%
发文量
32
期刊介绍: The Journal of the Korean Wood Science and Technology (JKWST) launched in 1973 as an official publication of the Korean Society of Wood Science and Technology has been served as a core of knowledges on wood science and technology. The Journal acts as a medium for the exchange of research in the area of science and technology related to wood, and publishes results on the biology, chemistry, physics and technology of wood and wood-based products. Research results about applied sciences of wood-based materials are also welcome. The Journal is published bimonthly, and printing six issues per year. Supplemental or special issues are published occasionally. The abbreviated and official title of the journal is ''J. Korean Wood Sci. Technol.''. All submitted manuscripts written in Korean or English are peer-reviewed by more than two reviewers. The title, abstract, acknowledgement, references, and captions of figures and tables should be provided in English for all submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信