Kazhdan–Lusztig变种上常见环面作用的复杂性

Q3 Mathematics
Maria Donten-Bury, Laura Escobar, Irem Portakal
{"title":"Kazhdan–Lusztig变种上常见环面作用的复杂性","authors":"Maria Donten-Bury, Laura Escobar, Irem Portakal","doi":"10.5802/alco.279","DOIUrl":null,"url":null,"abstract":"We investigate the class of Kazhdan-Lusztig varieties, and its subclass of matrix Schubert varieties, endowed with a naturally defined torus action. Writing a matrix Schubert variety $\\overline{X_w}$ as $\\overline{X_w}=Y_w\\times \\mathbb{C}^d$ (where $d$ is maximal possible), we show that $Y_w$ can be of complexity-$k$ exactly when $k\\neq 1$. Also, we give a combinatorial description of the extremal rays of the weight cone of a Kazhdan-Lusztig variety, which in particular turns out to be the edge cone of an acyclic directed graph. As a consequence we show that given permutations $v$ and $w$, the complexity of Kazhdan-Lusztig variety indexed by $(v,w)$ is the same as the complexity of the Richardson variety indexed by $(v,w)$. Finally, we use this description to compute the complexity of certain Kazhdan-Lusztig varieties.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity of the usual torus action on Kazhdan–Lusztig varieties\",\"authors\":\"Maria Donten-Bury, Laura Escobar, Irem Portakal\",\"doi\":\"10.5802/alco.279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the class of Kazhdan-Lusztig varieties, and its subclass of matrix Schubert varieties, endowed with a naturally defined torus action. Writing a matrix Schubert variety $\\\\overline{X_w}$ as $\\\\overline{X_w}=Y_w\\\\times \\\\mathbb{C}^d$ (where $d$ is maximal possible), we show that $Y_w$ can be of complexity-$k$ exactly when $k\\\\neq 1$. Also, we give a combinatorial description of the extremal rays of the weight cone of a Kazhdan-Lusztig variety, which in particular turns out to be the edge cone of an acyclic directed graph. As a consequence we show that given permutations $v$ and $w$, the complexity of Kazhdan-Lusztig variety indexed by $(v,w)$ is the same as the complexity of the Richardson variety indexed by $(v,w)$. Finally, we use this description to compute the complexity of certain Kazhdan-Lusztig varieties.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Kazhdan Lusztig变种的一类,及其矩阵Schubert变种的子类,赋予了自然定义的环面作用。将矩阵Schubert变种$\overline{X_w}$写成$\overline{X_w}=Y_w\times\mathb{C}^d$(其中$d$是最大可能的),我们证明了$Y_w$可以具有复杂性-$k$,恰好当$k\neq1$时。此外,我们给出了Kazhdan-Lusztig变种的权锥的极值射线的组合描述,该变种特别证明是非循环有向图的边锥。因此,我们证明了给定排列$v$和$w$,由$(v,w)$索引的Kazhdan Lusztig变种的复杂性与由$(v,w)美元索引的Richardson变种的复杂性相同。最后,我们用这个描述来计算某些Kazhdan Lusztig变种的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity of the usual torus action on Kazhdan–Lusztig varieties
We investigate the class of Kazhdan-Lusztig varieties, and its subclass of matrix Schubert varieties, endowed with a naturally defined torus action. Writing a matrix Schubert variety $\overline{X_w}$ as $\overline{X_w}=Y_w\times \mathbb{C}^d$ (where $d$ is maximal possible), we show that $Y_w$ can be of complexity-$k$ exactly when $k\neq 1$. Also, we give a combinatorial description of the extremal rays of the weight cone of a Kazhdan-Lusztig variety, which in particular turns out to be the edge cone of an acyclic directed graph. As a consequence we show that given permutations $v$ and $w$, the complexity of Kazhdan-Lusztig variety indexed by $(v,w)$ is the same as the complexity of the Richardson variety indexed by $(v,w)$. Finally, we use this description to compute the complexity of certain Kazhdan-Lusztig varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信