退化抛物型方程多参数辨识问题的优化方法

IF 0.9 4区 数学 Q2 MATHEMATICS
Liu Yang, Z. Deng
{"title":"退化抛物型方程多参数辨识问题的优化方法","authors":"Liu Yang, Z. Deng","doi":"10.1515/jiip-2022-0038","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the well-posedness of the solution of an optimal control problem related to a multi-parameters identification problem in degenerate parabolic equations. Problems of this type have important applications in several fields of applied science. Unlike other inverse coefficient problems for classical parabolic equations, the mathematical model discussed in the paper is degenerate on both lateral boundaries of the domain. Moreover, the status of the two unknown coefficients are different, namely that the reconstruction of the source term is mildly ill-posed, while the inverse initial value problem is severely ill-posed. On the basis of optimal control framework, the problem is transformed into an optimization problem. The existence of the minimizer is proved and the necessary conditions which must be satisfied by the minimizer are also established. Due to the difference between ill-posedness degrees of the two unknown coefficients, the extensively used conjugate theory for parabolic equations cannot be directly applied for our problem. By carefully analyzing the necessary conditions and the direct problem, the uniqueness, stability and convergence of the minimizer are obtained. The results obtained in the paper are interesting and useful, and can be extended to more general parabolic equations with degenerate coefficients.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization method for a multi-parameters identification problem in degenerate parabolic equations\",\"authors\":\"Liu Yang, Z. Deng\",\"doi\":\"10.1515/jiip-2022-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the well-posedness of the solution of an optimal control problem related to a multi-parameters identification problem in degenerate parabolic equations. Problems of this type have important applications in several fields of applied science. Unlike other inverse coefficient problems for classical parabolic equations, the mathematical model discussed in the paper is degenerate on both lateral boundaries of the domain. Moreover, the status of the two unknown coefficients are different, namely that the reconstruction of the source term is mildly ill-posed, while the inverse initial value problem is severely ill-posed. On the basis of optimal control framework, the problem is transformed into an optimization problem. The existence of the minimizer is proved and the necessary conditions which must be satisfied by the minimizer are also established. Due to the difference between ill-posedness degrees of the two unknown coefficients, the extensively used conjugate theory for parabolic equations cannot be directly applied for our problem. By carefully analyzing the necessary conditions and the direct problem, the uniqueness, stability and convergence of the minimizer are obtained. The results obtained in the paper are interesting and useful, and can be extended to more general parabolic equations with degenerate coefficients.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2022-0038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2022-0038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文研究了退化抛物型方程中与多参数辨识问题相关的最优控制问题解的适定性。这类问题在应用科学的几个领域有着重要的应用。与经典抛物型方程的其他系数反问题不同,本文讨论的数学模型在域的两个横向边界上都是退化的。此外,两个未知系数的状态不同,即源项的重构是轻度不适定性的,而反初值问题是严重不适定性。在最优控制框架的基础上,将问题转化为优化问题。证明了极小值的存在性,并建立了极小值必须满足的必要条件。由于两个未知系数的不适定性程度不同,广泛使用的抛物型方程共轭理论不能直接应用于我们的问题。通过仔细分析必要条件和直接问题,得到了极小化子的唯一性、稳定性和收敛性。本文的结果是有趣和有用的,可以推广到更一般的退化系数抛物型方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization method for a multi-parameters identification problem in degenerate parabolic equations
Abstract In this paper, we study the well-posedness of the solution of an optimal control problem related to a multi-parameters identification problem in degenerate parabolic equations. Problems of this type have important applications in several fields of applied science. Unlike other inverse coefficient problems for classical parabolic equations, the mathematical model discussed in the paper is degenerate on both lateral boundaries of the domain. Moreover, the status of the two unknown coefficients are different, namely that the reconstruction of the source term is mildly ill-posed, while the inverse initial value problem is severely ill-posed. On the basis of optimal control framework, the problem is transformed into an optimization problem. The existence of the minimizer is proved and the necessary conditions which must be satisfied by the minimizer are also established. Due to the difference between ill-posedness degrees of the two unknown coefficients, the extensively used conjugate theory for parabolic equations cannot be directly applied for our problem. By carefully analyzing the necessary conditions and the direct problem, the uniqueness, stability and convergence of the minimizer are obtained. The results obtained in the paper are interesting and useful, and can be extended to more general parabolic equations with degenerate coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信