单胚、它们的边界、分形和C*-代数

Q3 Mathematics
Giulia dal Verme, T. Weigel
{"title":"单胚、它们的边界、分形和C*-代数","authors":"Giulia dal Verme, T. Weigel","doi":"10.1515/taa-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract In this note we establish some connections between the theory of self-similar fractals in the sense of John E. Hutchinson (cf. [3]), and the theory of boundary quotients of C*-algebras associated to monoids. Although we must leave several important questions open, we show that the existence of self-similar ℳ-fractals for a given monoid ℳ, gives rise to examples of C*-algebras (1.9) generalizing the boundary quotients ∂Cλ*(𝒨) \\partial C_\\lambda ^*(\\mathcal{M}) discussed by X. Li in [4, §7, p. 71]. The starting point for our investigations is the observation that the universal boundary of a finitely 1-generated monoid carries naturally two topologies. The fine topology plays a prominent role in the construction of these boundary quotients, while the cone topology can be used to define canonical measures on the attractor of an ℳ-fractal for a finitely 1-generated monoid ℳ.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"8 1","pages":"28 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2020-0003","citationCount":"0","resultStr":"{\"title\":\"Monoids, their boundaries, fractals and C*-algebras\",\"authors\":\"Giulia dal Verme, T. Weigel\",\"doi\":\"10.1515/taa-2020-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note we establish some connections between the theory of self-similar fractals in the sense of John E. Hutchinson (cf. [3]), and the theory of boundary quotients of C*-algebras associated to monoids. Although we must leave several important questions open, we show that the existence of self-similar ℳ-fractals for a given monoid ℳ, gives rise to examples of C*-algebras (1.9) generalizing the boundary quotients ∂Cλ*(𝒨) \\\\partial C_\\\\lambda ^*(\\\\mathcal{M}) discussed by X. Li in [4, §7, p. 71]. The starting point for our investigations is the observation that the universal boundary of a finitely 1-generated monoid carries naturally two topologies. The fine topology plays a prominent role in the construction of these boundary quotients, while the cone topology can be used to define canonical measures on the attractor of an ℳ-fractal for a finitely 1-generated monoid ℳ.\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"8 1\",\"pages\":\"28 - 45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/taa-2020-0003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2020-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文建立了John E. Hutchinson意义上的自相似分形理论(cf.[3])与C*-代数的边商理论之间的联系。虽然我们必须留下几个重要的问题,但我们证明了对于给定的单形体_(_)_(_)_(_)_(_)_()_()_()_()_()_()_()_()_()分形的存在性,并给出了X. Li在[4,§7,p. 71]中讨论的推广边界商∂Cλ*(𝒨)\partial C_ \lambda ^*(\mathcal{M})的C*-代数(1.9)的例子。我们研究的出发点是观察到有限1生成的单群的普遍边界自然携带两个拓扑。精细拓扑在这些边界商的构造中起着重要的作用,而圆锥拓扑则可以用来定义有限生成的一元形算子的吸引子上的正则测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monoids, their boundaries, fractals and C*-algebras
Abstract In this note we establish some connections between the theory of self-similar fractals in the sense of John E. Hutchinson (cf. [3]), and the theory of boundary quotients of C*-algebras associated to monoids. Although we must leave several important questions open, we show that the existence of self-similar ℳ-fractals for a given monoid ℳ, gives rise to examples of C*-algebras (1.9) generalizing the boundary quotients ∂Cλ*(𝒨) \partial C_\lambda ^*(\mathcal{M}) discussed by X. Li in [4, §7, p. 71]. The starting point for our investigations is the observation that the universal boundary of a finitely 1-generated monoid carries naturally two topologies. The fine topology plays a prominent role in the construction of these boundary quotients, while the cone topology can be used to define canonical measures on the attractor of an ℳ-fractal for a finitely 1-generated monoid ℳ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topological Algebra and its Applications
Topological Algebra and its Applications Mathematics-Algebra and Number Theory
CiteScore
1.20
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信