大体积胶合板钉扎连接的热效应研究

IF 1.1 4区 农林科学 Q3 FORESTRY
Tu X. Ho, Detlef C. Laughery, Arijit Sinha
{"title":"大体积胶合板钉扎连接的热效应研究","authors":"Tu X. Ho, Detlef C. Laughery, Arijit Sinha","doi":"10.13073/fpj-d-22-00039","DOIUrl":null,"url":null,"abstract":"\n Mass ply panels (MPP), a relatively new mass timber product, has been utilized in several construction projects as diaphragm and wall panels. Connection for MPP is a crucial structural component that requires a better understanding. This article presents an experimental investigation into elevated temperature exposure–driven property degradation of MPP nailed connections, which is important for both the design of new structures in terms of fire resistance and the rehabilitation of structures partially damaged by fire. One control group and 32 exposure groups, which were combinations of eight elevated temperatures and four exposure durations, were investigated. The failure modes and yield strength of the nailed connection were analyzed as a function of elevated temperature and exposure time and compared with the prediction from the National Design Specification and existing literature. The results show a decrease of up to 45 percent in initial stiffness and ultimate load; meanwhile, there was no statistical evidence for the change in yield load in the majority of testing groups. Two analytical models, namely, multilinear regression and first-order kinetics model, were proposed to model the degradation of initial stiffness and ultimate strength. The kinetics model provided a better prediction and suggested that the initial stiffness and ultimate strength of the nail connection degraded over time at rates depending on the exposure temperature.","PeriodicalId":12387,"journal":{"name":"Forest Products Journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Thermal Effects on Nailed Connection of Mass Ply Panels\",\"authors\":\"Tu X. Ho, Detlef C. Laughery, Arijit Sinha\",\"doi\":\"10.13073/fpj-d-22-00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mass ply panels (MPP), a relatively new mass timber product, has been utilized in several construction projects as diaphragm and wall panels. Connection for MPP is a crucial structural component that requires a better understanding. This article presents an experimental investigation into elevated temperature exposure–driven property degradation of MPP nailed connections, which is important for both the design of new structures in terms of fire resistance and the rehabilitation of structures partially damaged by fire. One control group and 32 exposure groups, which were combinations of eight elevated temperatures and four exposure durations, were investigated. The failure modes and yield strength of the nailed connection were analyzed as a function of elevated temperature and exposure time and compared with the prediction from the National Design Specification and existing literature. The results show a decrease of up to 45 percent in initial stiffness and ultimate load; meanwhile, there was no statistical evidence for the change in yield load in the majority of testing groups. Two analytical models, namely, multilinear regression and first-order kinetics model, were proposed to model the degradation of initial stiffness and ultimate strength. The kinetics model provided a better prediction and suggested that the initial stiffness and ultimate strength of the nail connection degraded over time at rates depending on the exposure temperature.\",\"PeriodicalId\":12387,\"journal\":{\"name\":\"Forest Products Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Products Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13073/fpj-d-22-00039\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Products Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13073/fpj-d-22-00039","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

大块胶合板(MPP)是一种相对较新的大块木材产品,已在多个建筑项目中用作隔板和墙板。MPP的连接是一个关键的结构组件,需要更好地理解。本文对MPP钉连接的高温暴露驱动性能退化进行了实验研究,这对新结构的耐火设计和部分受损结构的修复都很重要。研究了一个对照组和32个暴露组,它们是八个升高的温度和四个暴露持续时间的组合。分析了钉连接的失效模式和屈服强度作为高温和暴露时间的函数,并与国家设计规范和现有文献的预测进行了比较。结果表明,初始刚度和极限载荷降低了45%;同时,没有统计证据表明大多数试验组的屈服载荷发生了变化。提出了两个分析模型,即多线性回归和一阶动力学模型,以模拟初始刚度和极限强度的退化。动力学模型提供了更好的预测,并表明钉连接的初始刚度和极限强度随着时间的推移以取决于暴露温度的速率退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Thermal Effects on Nailed Connection of Mass Ply Panels
Mass ply panels (MPP), a relatively new mass timber product, has been utilized in several construction projects as diaphragm and wall panels. Connection for MPP is a crucial structural component that requires a better understanding. This article presents an experimental investigation into elevated temperature exposure–driven property degradation of MPP nailed connections, which is important for both the design of new structures in terms of fire resistance and the rehabilitation of structures partially damaged by fire. One control group and 32 exposure groups, which were combinations of eight elevated temperatures and four exposure durations, were investigated. The failure modes and yield strength of the nailed connection were analyzed as a function of elevated temperature and exposure time and compared with the prediction from the National Design Specification and existing literature. The results show a decrease of up to 45 percent in initial stiffness and ultimate load; meanwhile, there was no statistical evidence for the change in yield load in the majority of testing groups. Two analytical models, namely, multilinear regression and first-order kinetics model, were proposed to model the degradation of initial stiffness and ultimate strength. The kinetics model provided a better prediction and suggested that the initial stiffness and ultimate strength of the nail connection degraded over time at rates depending on the exposure temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forest Products Journal
Forest Products Journal 工程技术-材料科学:纸与木材
CiteScore
2.10
自引率
11.10%
发文量
30
审稿时长
6-12 weeks
期刊介绍: Forest Products Journal (FPJ) is the source of information for industry leaders, researchers, teachers, students, and everyone interested in today''s forest products industry. The Forest Products Journal is well respected for publishing high-quality peer-reviewed technical research findings at the applied or practical level that reflect the current state of wood science and technology. Articles suitable as Technical Notes are brief notes (generally 1,200 words or less) that describe new or improved equipment or techniques; report on findings produced as by-products of major studies; or outline progress to date on long-term projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信