增强\(A_{\infty }\) -阻碍理论

IF 0.5 4区 数学
Fernando Muro
{"title":"增强\\(A_{\\infty }\\) -阻碍理论","authors":"Fernando Muro","doi":"10.1007/s40062-019-00245-0","DOIUrl":null,"url":null,"abstract":"<p>An <span>\\(A_n\\)</span>-algebra <span>\\(A= (A,m_1, m_2, \\ldots , m_n)\\)</span> is a special kind of <span>\\(A_\\infty \\)</span>-algebra satisfying the <span>\\(A_\\infty \\)</span>-relations involving just the <span>\\(m_i\\)</span> listed. We consider obstructions to extending an <span>\\(A_{n-1}\\)</span> algebra to an <span>\\(A_n\\)</span>-algebra. We enhance the known techniques by extending the Bousfield–Kan spectral sequence to apply to the homotopy groups of the space of minimal (i.e.?<span>\\(m_1=0)\\)</span><span>\\(A_\\infty \\)</span>-algebra structures on a given graded projective module. We also consider the Bousfield–Kan spectral sequence for the moduli space of <span>\\(A_\\infty \\)</span>-algebras. We compute up to the <span>\\(E_2\\)</span> terms and differentials <span>\\(d_2\\)</span> of these spectral sequences in terms of Hochschild cohomology.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 1","pages":"61 - 112"},"PeriodicalIF":0.5000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00245-0","citationCount":"2","resultStr":"{\"title\":\"Enhanced \\\\(A_{\\\\infty }\\\\)-obstruction theory\",\"authors\":\"Fernando Muro\",\"doi\":\"10.1007/s40062-019-00245-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An <span>\\\\(A_n\\\\)</span>-algebra <span>\\\\(A= (A,m_1, m_2, \\\\ldots , m_n)\\\\)</span> is a special kind of <span>\\\\(A_\\\\infty \\\\)</span>-algebra satisfying the <span>\\\\(A_\\\\infty \\\\)</span>-relations involving just the <span>\\\\(m_i\\\\)</span> listed. We consider obstructions to extending an <span>\\\\(A_{n-1}\\\\)</span> algebra to an <span>\\\\(A_n\\\\)</span>-algebra. We enhance the known techniques by extending the Bousfield–Kan spectral sequence to apply to the homotopy groups of the space of minimal (i.e.?<span>\\\\(m_1=0)\\\\)</span><span>\\\\(A_\\\\infty \\\\)</span>-algebra structures on a given graded projective module. We also consider the Bousfield–Kan spectral sequence for the moduli space of <span>\\\\(A_\\\\infty \\\\)</span>-algebras. We compute up to the <span>\\\\(E_2\\\\)</span> terms and differentials <span>\\\\(d_2\\\\)</span> of these spectral sequences in terms of Hochschild cohomology.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"15 1\",\"pages\":\"61 - 112\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-019-00245-0\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-019-00245-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00245-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

\(A_n\) -代数\(A= (A,m_1, m_2, \ldots , m_n)\)是一种特殊的\(A_\infty \) -代数,满足只涉及所列\(m_i\)的\(A_\infty \) -关系。我们考虑将\(A_{n-1}\)代数扩展到\(A_n\) -代数的障碍。我们通过扩展Bousfield-Kan谱序列来改进已知的技术,使其适用于极小空间(即?\(m_1=0)\)\(A_\infty \) -给定的分级投影模块上的代数结构。我们还考虑了\(A_\infty \) -代数模空间的Bousfield-Kan谱序列。我们用Hochschild上同调计算了这些谱序列的\(E_2\)项和微分\(d_2\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced \(A_{\infty }\)-obstruction theory

Enhanced \(A_{\infty }\)-obstruction theory

An \(A_n\)-algebra \(A= (A,m_1, m_2, \ldots , m_n)\) is a special kind of \(A_\infty \)-algebra satisfying the \(A_\infty \)-relations involving just the \(m_i\) listed. We consider obstructions to extending an \(A_{n-1}\) algebra to an \(A_n\)-algebra. We enhance the known techniques by extending the Bousfield–Kan spectral sequence to apply to the homotopy groups of the space of minimal (i.e.?\(m_1=0)\)\(A_\infty \)-algebra structures on a given graded projective module. We also consider the Bousfield–Kan spectral sequence for the moduli space of \(A_\infty \)-algebras. We compute up to the \(E_2\) terms and differentials \(d_2\) of these spectral sequences in terms of Hochschild cohomology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信