考虑物理非线性的边界条件下积分微分方程的边值问题

IF 0.7 Q2 MATHEMATICS
A. Seitmuratov, N. K. Medeubaev, T.T. Kozhoshov, B.R. Medetbekov
{"title":"考虑物理非线性的边界条件下积分微分方程的边值问题","authors":"A. Seitmuratov, N. K. Medeubaev, T.T. Kozhoshov, B.R. Medetbekov","doi":"10.31489/2023m2/131-141","DOIUrl":null,"url":null,"abstract":"When solving integrodifferential equations under boundary conditions, taking into account physical nonlinearity, a broad class of boundary-value problems of oscillations arises associated with various boundary conditions at the edges of a flat element. When taking into account non-stationary external influences, the main parameters is the frequency of natural vibrations of a flat component, taking into account temperature, prestressing, and other factors. The study of such problems, taking into account complicating factors, reduces to solving rather complex problems. The difficulty of solving these problems is due to both the type of equations and the variety. We analyze the results of previous works on the boundary problems of vibrations of plane elements. Possible boundary conditions at the edges of a flat element and the necessary initial conditions for solving particular problems of self-oscillation and forced vibrations, and other problems are considered. The set of equations, boundaries, and initial conditions make it possible to formulate and solve various boundary value problems of vibrations for a flat element. The oscillation equations for a flat element in the form of a plate given in this paper contain viscoelastic operators that describe the viscous behavior of the materials of a flat component. In studying oscillations and wave processes, it is advisable to take the kernels of viscoelastic operators regularly, since only such operators describe instantaneous elasticity and then viscous flow.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary value problems of integrodifferential equations under boundary conditions taking into account physical nonlinearity\",\"authors\":\"A. Seitmuratov, N. K. Medeubaev, T.T. Kozhoshov, B.R. Medetbekov\",\"doi\":\"10.31489/2023m2/131-141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When solving integrodifferential equations under boundary conditions, taking into account physical nonlinearity, a broad class of boundary-value problems of oscillations arises associated with various boundary conditions at the edges of a flat element. When taking into account non-stationary external influences, the main parameters is the frequency of natural vibrations of a flat component, taking into account temperature, prestressing, and other factors. The study of such problems, taking into account complicating factors, reduces to solving rather complex problems. The difficulty of solving these problems is due to both the type of equations and the variety. We analyze the results of previous works on the boundary problems of vibrations of plane elements. Possible boundary conditions at the edges of a flat element and the necessary initial conditions for solving particular problems of self-oscillation and forced vibrations, and other problems are considered. The set of equations, boundaries, and initial conditions make it possible to formulate and solve various boundary value problems of vibrations for a flat element. The oscillation equations for a flat element in the form of a plate given in this paper contain viscoelastic operators that describe the viscous behavior of the materials of a flat component. In studying oscillations and wave processes, it is advisable to take the kernels of viscoelastic operators regularly, since only such operators describe instantaneous elasticity and then viscous flow.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023m2/131-141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m2/131-141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在求解边界条件下的积分微分方程时,考虑到物理非线性,会产生一类与平面单元边缘的各种边界条件相关的振动边值问题。当考虑非平稳外部影响时,主要参数是考虑温度、预应力和其他因素的扁平构件的自振频率。考虑到复杂的因素,对这类问题的研究可以简化为解决相当复杂的问题。解决这些问题的困难在于方程的类型和种类。我们分析了前人关于平面单元振动边界问题的研究成果。考虑了平面单元边缘可能存在的边界条件,以及解决自激振动和强迫振动等特殊问题的必要初始条件。该方程、边界和初始条件的集合使得表述和求解平面单元振动的各种边值问题成为可能。本文给出的平板形式的平面单元的振动方程包含了描述平面部件材料粘性行为的粘弹性算符。在研究振荡和波动过程时,最好有规律地取粘弹性算符的核,因为只有这些算符才能描述瞬时弹性,然后才是粘性流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary value problems of integrodifferential equations under boundary conditions taking into account physical nonlinearity
When solving integrodifferential equations under boundary conditions, taking into account physical nonlinearity, a broad class of boundary-value problems of oscillations arises associated with various boundary conditions at the edges of a flat element. When taking into account non-stationary external influences, the main parameters is the frequency of natural vibrations of a flat component, taking into account temperature, prestressing, and other factors. The study of such problems, taking into account complicating factors, reduces to solving rather complex problems. The difficulty of solving these problems is due to both the type of equations and the variety. We analyze the results of previous works on the boundary problems of vibrations of plane elements. Possible boundary conditions at the edges of a flat element and the necessary initial conditions for solving particular problems of self-oscillation and forced vibrations, and other problems are considered. The set of equations, boundaries, and initial conditions make it possible to formulate and solve various boundary value problems of vibrations for a flat element. The oscillation equations for a flat element in the form of a plate given in this paper contain viscoelastic operators that describe the viscous behavior of the materials of a flat component. In studying oscillations and wave processes, it is advisable to take the kernels of viscoelastic operators regularly, since only such operators describe instantaneous elasticity and then viscous flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信