服务质量:电信公司客户投诉数据应用程序

IF 0.4 Q4 MANAGEMENT
J. Achcar, Daniel Marcos Godoy
{"title":"服务质量:电信公司客户投诉数据应用程序","authors":"J. Achcar, Daniel Marcos Godoy","doi":"10.14807/IJMP.V12I4.1352","DOIUrl":null,"url":null,"abstract":"The evaluation of the service quality standard of a telecommunication company using statistical process control (SPC) methods is the main goal of this paper. The study used a dataset collected from January 2018 to November 2019 associated with monthly and weekly customer complaint counts due to the technical services provided by the company. Multiple linear regression models with the count data transformed to a logarithmic scale and Poisson regression models with the original count data detected some significant factors affecting the weekly/monthly complaint counts. In addition, forecasts of future complaint counts based on the statistical models could be of interest for the company to plan the number of technicians in different sectors at different times of the year leading to improvements in the service provided by the telephone company.","PeriodicalId":54124,"journal":{"name":"Independent Journal of Management & Production","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality of services: an application with customer complaint data from a telecommunication company\",\"authors\":\"J. Achcar, Daniel Marcos Godoy\",\"doi\":\"10.14807/IJMP.V12I4.1352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evaluation of the service quality standard of a telecommunication company using statistical process control (SPC) methods is the main goal of this paper. The study used a dataset collected from January 2018 to November 2019 associated with monthly and weekly customer complaint counts due to the technical services provided by the company. Multiple linear regression models with the count data transformed to a logarithmic scale and Poisson regression models with the original count data detected some significant factors affecting the weekly/monthly complaint counts. In addition, forecasts of future complaint counts based on the statistical models could be of interest for the company to plan the number of technicians in different sectors at different times of the year leading to improvements in the service provided by the telephone company.\",\"PeriodicalId\":54124,\"journal\":{\"name\":\"Independent Journal of Management & Production\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Independent Journal of Management & Production\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14807/IJMP.V12I4.1352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Independent Journal of Management & Production","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14807/IJMP.V12I4.1352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

利用统计过程控制(SPC)方法对某电信公司的服务质量标准进行评价是本文的主要目的。该研究使用了2018年1月至2019年11月收集的数据集,这些数据集与该公司提供的技术服务引起的每月和每周客户投诉数量有关。将投诉数据转换为对数尺度的多元线性回归模型和原始投诉数据的泊松回归模型发现了影响周/月投诉数量的显著因素。此外,根据统计模型预测未来的投诉数量,可能对公司在一年中不同时间规划不同部门的技术人员人数有好处,从而改善电话公司提供的服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality of services: an application with customer complaint data from a telecommunication company
The evaluation of the service quality standard of a telecommunication company using statistical process control (SPC) methods is the main goal of this paper. The study used a dataset collected from January 2018 to November 2019 associated with monthly and weekly customer complaint counts due to the technical services provided by the company. Multiple linear regression models with the count data transformed to a logarithmic scale and Poisson regression models with the original count data detected some significant factors affecting the weekly/monthly complaint counts. In addition, forecasts of future complaint counts based on the statistical models could be of interest for the company to plan the number of technicians in different sectors at different times of the year leading to improvements in the service provided by the telephone company.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
20.00%
发文量
105
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信