{"title":"CrossFit®参与者的静息能量消耗:预测方程与间接量热法","authors":"M. Sena, M. Souza, Valden Capistrano Junior","doi":"10.7575/AIAC.IJKSS.V.9N.2P.7","DOIUrl":null,"url":null,"abstract":"Background: CrossFit® involves high-intensity functional movements and research has shown that the program increases metabolic rates in participants. Objective: To measure resting energy expenditure (REE) in CrossFit® participants using indirect calorimetry (IC) and to verify the most appropriate predictive equation to estimate REE. Methods: Overall, 142 CrossFit® participants (18–59 years; 91 [64.1%], women) underwent weight, height, waist circumference, and body mass index (BMI) measurements. Body composition was evaluated using a portable ultrasound system (BodyMetrix®). REEs were measured (mREE) by IC and predicted by six different equations (pREE): Harris-Benedict, World Health Organization (WHO), Henry and Rees, Cunningham (1980 and 1991), and Mifflin–St. Jeor. Results: The mean age was 33.0 (6.3) years, with no significant difference between men and women; mean mREE, 1583.2(404.4) kcal/d; and pREE, 1455.5(230.9) to 1711.3(285.5) kcal/d. The best REE predictive equations for this population were Cunningham (1991) (P=0.338), WHO (P=0.494), and Harris-Benedict (P=0.705) equations. The Harris-Benedict equation presented a smaller difference compared with IC [12.9(307.6) kcal], the Cunningham (1991) equation showed improved adequacy (102.5%), and the WHO equation presented highest accuracy (59.9%). The equations that were closest to the mREE were the Harris-Benedict for women and the WHO equation for men. Conclusion: Therefore, for CrossFit® participants, the REE can accurately be predicted with the Cunningham (1991), WHO, and Harris-Benedict equations.","PeriodicalId":36327,"journal":{"name":"International Journal of Kinesiology and Sports Science","volume":"9 1","pages":"7-13"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resting Energy Expenditure in CrossFit® Participants: Predictive Equations versus Indirect Calorimetry\",\"authors\":\"M. Sena, M. Souza, Valden Capistrano Junior\",\"doi\":\"10.7575/AIAC.IJKSS.V.9N.2P.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: CrossFit® involves high-intensity functional movements and research has shown that the program increases metabolic rates in participants. Objective: To measure resting energy expenditure (REE) in CrossFit® participants using indirect calorimetry (IC) and to verify the most appropriate predictive equation to estimate REE. Methods: Overall, 142 CrossFit® participants (18–59 years; 91 [64.1%], women) underwent weight, height, waist circumference, and body mass index (BMI) measurements. Body composition was evaluated using a portable ultrasound system (BodyMetrix®). REEs were measured (mREE) by IC and predicted by six different equations (pREE): Harris-Benedict, World Health Organization (WHO), Henry and Rees, Cunningham (1980 and 1991), and Mifflin–St. Jeor. Results: The mean age was 33.0 (6.3) years, with no significant difference between men and women; mean mREE, 1583.2(404.4) kcal/d; and pREE, 1455.5(230.9) to 1711.3(285.5) kcal/d. The best REE predictive equations for this population were Cunningham (1991) (P=0.338), WHO (P=0.494), and Harris-Benedict (P=0.705) equations. The Harris-Benedict equation presented a smaller difference compared with IC [12.9(307.6) kcal], the Cunningham (1991) equation showed improved adequacy (102.5%), and the WHO equation presented highest accuracy (59.9%). The equations that were closest to the mREE were the Harris-Benedict for women and the WHO equation for men. Conclusion: Therefore, for CrossFit® participants, the REE can accurately be predicted with the Cunningham (1991), WHO, and Harris-Benedict equations.\",\"PeriodicalId\":36327,\"journal\":{\"name\":\"International Journal of Kinesiology and Sports Science\",\"volume\":\"9 1\",\"pages\":\"7-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Kinesiology and Sports Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7575/AIAC.IJKSS.V.9N.2P.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Kinesiology and Sports Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7575/AIAC.IJKSS.V.9N.2P.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
Resting Energy Expenditure in CrossFit® Participants: Predictive Equations versus Indirect Calorimetry
Background: CrossFit® involves high-intensity functional movements and research has shown that the program increases metabolic rates in participants. Objective: To measure resting energy expenditure (REE) in CrossFit® participants using indirect calorimetry (IC) and to verify the most appropriate predictive equation to estimate REE. Methods: Overall, 142 CrossFit® participants (18–59 years; 91 [64.1%], women) underwent weight, height, waist circumference, and body mass index (BMI) measurements. Body composition was evaluated using a portable ultrasound system (BodyMetrix®). REEs were measured (mREE) by IC and predicted by six different equations (pREE): Harris-Benedict, World Health Organization (WHO), Henry and Rees, Cunningham (1980 and 1991), and Mifflin–St. Jeor. Results: The mean age was 33.0 (6.3) years, with no significant difference between men and women; mean mREE, 1583.2(404.4) kcal/d; and pREE, 1455.5(230.9) to 1711.3(285.5) kcal/d. The best REE predictive equations for this population were Cunningham (1991) (P=0.338), WHO (P=0.494), and Harris-Benedict (P=0.705) equations. The Harris-Benedict equation presented a smaller difference compared with IC [12.9(307.6) kcal], the Cunningham (1991) equation showed improved adequacy (102.5%), and the WHO equation presented highest accuracy (59.9%). The equations that were closest to the mREE were the Harris-Benedict for women and the WHO equation for men. Conclusion: Therefore, for CrossFit® participants, the REE can accurately be predicted with the Cunningham (1991), WHO, and Harris-Benedict equations.