洪水条件下箱形和圆形涵洞的堵塞:实验室调查

IF 2.2 Q3 WATER RESOURCES
Miranzadeh Azam, Keshavarzi Alireza, H. Hossein
{"title":"洪水条件下箱形和圆形涵洞的堵塞:实验室调查","authors":"Miranzadeh Azam, Keshavarzi Alireza, H. Hossein","doi":"10.1080/15715124.2022.2064483","DOIUrl":null,"url":null,"abstract":"ABSTRACT Culverts are used to allow runoff to pass through roads, railways, and embankments. Accumulation of debris during flood events reduces the culvert flow capacity and hence flow overtopping results in culvert failure both hydraulically and structurally. This paper presents the results of an experimental study of temporal variations of blockage upstream of culverts due to woody debris under unsteady flow conditions. To simulate flood conditions, a synthetic flow hydrograph was produced in the laboratory. Cylindrical wooden dowels with two different diameters were used to simulate the woody debris carrying during flood events. Two culvert shapes including box and circular pipe culverts are examined here. The results showed that the maximum percentage of blockage occurs during the falling limb of the hydrograph. Although the feeding rate of smaller diameter woody debris into the flow is of considerable importance in the culvert blockage, the blockage percentage is not influenced by the feeding rate of large woody debris. It was also found that the pipe culvert is more susceptible to blockage than the box-shaped culvert. Using regression analysis, predictive equations are suggested to estimate the percentage of culvert blockage during flood events.","PeriodicalId":14344,"journal":{"name":"International Journal of River Basin Management","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Blockage of box-shaped and circular culverts under flood event conditions: a laboratory investigation\",\"authors\":\"Miranzadeh Azam, Keshavarzi Alireza, H. Hossein\",\"doi\":\"10.1080/15715124.2022.2064483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Culverts are used to allow runoff to pass through roads, railways, and embankments. Accumulation of debris during flood events reduces the culvert flow capacity and hence flow overtopping results in culvert failure both hydraulically and structurally. This paper presents the results of an experimental study of temporal variations of blockage upstream of culverts due to woody debris under unsteady flow conditions. To simulate flood conditions, a synthetic flow hydrograph was produced in the laboratory. Cylindrical wooden dowels with two different diameters were used to simulate the woody debris carrying during flood events. Two culvert shapes including box and circular pipe culverts are examined here. The results showed that the maximum percentage of blockage occurs during the falling limb of the hydrograph. Although the feeding rate of smaller diameter woody debris into the flow is of considerable importance in the culvert blockage, the blockage percentage is not influenced by the feeding rate of large woody debris. It was also found that the pipe culvert is more susceptible to blockage than the box-shaped culvert. Using regression analysis, predictive equations are suggested to estimate the percentage of culvert blockage during flood events.\",\"PeriodicalId\":14344,\"journal\":{\"name\":\"International Journal of River Basin Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of River Basin Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15715124.2022.2064483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of River Basin Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15715124.2022.2064483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 5

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blockage of box-shaped and circular culverts under flood event conditions: a laboratory investigation
ABSTRACT Culverts are used to allow runoff to pass through roads, railways, and embankments. Accumulation of debris during flood events reduces the culvert flow capacity and hence flow overtopping results in culvert failure both hydraulically and structurally. This paper presents the results of an experimental study of temporal variations of blockage upstream of culverts due to woody debris under unsteady flow conditions. To simulate flood conditions, a synthetic flow hydrograph was produced in the laboratory. Cylindrical wooden dowels with two different diameters were used to simulate the woody debris carrying during flood events. Two culvert shapes including box and circular pipe culverts are examined here. The results showed that the maximum percentage of blockage occurs during the falling limb of the hydrograph. Although the feeding rate of smaller diameter woody debris into the flow is of considerable importance in the culvert blockage, the blockage percentage is not influenced by the feeding rate of large woody debris. It was also found that the pipe culvert is more susceptible to blockage than the box-shaped culvert. Using regression analysis, predictive equations are suggested to estimate the percentage of culvert blockage during flood events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
4.00%
发文量
48
期刊介绍: include, but are not limited to new developments or applications in the following areas: AREAS OF INTEREST - integrated water resources management - watershed land use planning and management - spatial planning and management of floodplains - flood forecasting and flood risk management - drought forecasting and drought management - floodplain, river and estuarine restoration - climate change impact prediction and planning of remedial measures - management of mountain rivers - water quality management including non point source pollution - operation strategies for engineered river systems - maintenance strategies for river systems and for structures - project-affected-people and stakeholder participation - conservation of natural and cultural heritage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信