一种战斗意图识别的层次聚合模型

Q3 Engineering
Y. Li, Junsheng Wu, Weigang Li, Wei Dong, Aiqing Fang
{"title":"一种战斗意图识别的层次聚合模型","authors":"Y. Li, Junsheng Wu, Weigang Li, Wei Dong, Aiqing Fang","doi":"10.1051/jnwpu/20234120400","DOIUrl":null,"url":null,"abstract":"Combat intent recognition refers to analyzing the enemy target's state information to interpret and judge the purpose of the enemy. With the increased knowledge of combat platforms, these time-series enemy state presents multi-dimensional and massive characteristics. Using neural networks to learn enemy state information has become a research trend in the face of such traits. To address these challenges, we propose a hierarchical aggregation model to recognize the intention of the target. The bottom layer of our model is based on convolutional neural network(CNN) to perceive behavior features, and the middle layer is based on Bi-LSTM(Bi-directional long short-term memory) to aggregate the long-time interdependence information between sub-intentions. The top layer focuses on higher-level features that contribute more to the recognition of intent through the attention mechanism and finally combines the global information to recognize the intention. Extensive experimental results show the superiority of our model in that the recognition accuracy achieves 88.83%, which can solve the problem of identifying air target intent on the modern battlefield.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hierarchical aggregation model for combat intention recognition\",\"authors\":\"Y. Li, Junsheng Wu, Weigang Li, Wei Dong, Aiqing Fang\",\"doi\":\"10.1051/jnwpu/20234120400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combat intent recognition refers to analyzing the enemy target's state information to interpret and judge the purpose of the enemy. With the increased knowledge of combat platforms, these time-series enemy state presents multi-dimensional and massive characteristics. Using neural networks to learn enemy state information has become a research trend in the face of such traits. To address these challenges, we propose a hierarchical aggregation model to recognize the intention of the target. The bottom layer of our model is based on convolutional neural network(CNN) to perceive behavior features, and the middle layer is based on Bi-LSTM(Bi-directional long short-term memory) to aggregate the long-time interdependence information between sub-intentions. The top layer focuses on higher-level features that contribute more to the recognition of intent through the attention mechanism and finally combines the global information to recognize the intention. Extensive experimental results show the superiority of our model in that the recognition accuracy achieves 88.83%, which can solve the problem of identifying air target intent on the modern battlefield.\",\"PeriodicalId\":39691,\"journal\":{\"name\":\"西北工业大学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"西北工业大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/jnwpu/20234120400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20234120400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

作战意图识别是指分析敌方目标的状态信息,以解释和判断敌方的目的。随着对作战平台知识的不断丰富,这些时间序列的敌情呈现出多维、海量的特点。面对这样的特点,利用神经网络学习敌情信息已成为一种研究趋势。为了应对这些挑战,我们提出了一个层次聚合模型来识别目标的意图。我们模型的底层基于卷积神经网络(CNN)来感知行为特征,中间层基于双向长短期记忆(Bi-LSTM)来聚合子意图之间的长期相互依赖信息。顶层关注通过注意力机制对意图识别贡献更大的更高层次特征,并最终结合全局信息来识别意图。大量的实验结果表明,该模型的优越性在于识别准确率达到88.83%,可以解决现代战场上识别空中目标意图的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hierarchical aggregation model for combat intention recognition
Combat intent recognition refers to analyzing the enemy target's state information to interpret and judge the purpose of the enemy. With the increased knowledge of combat platforms, these time-series enemy state presents multi-dimensional and massive characteristics. Using neural networks to learn enemy state information has become a research trend in the face of such traits. To address these challenges, we propose a hierarchical aggregation model to recognize the intention of the target. The bottom layer of our model is based on convolutional neural network(CNN) to perceive behavior features, and the middle layer is based on Bi-LSTM(Bi-directional long short-term memory) to aggregate the long-time interdependence information between sub-intentions. The top layer focuses on higher-level features that contribute more to the recognition of intent through the attention mechanism and finally combines the global information to recognize the intention. Extensive experimental results show the superiority of our model in that the recognition accuracy achieves 88.83%, which can solve the problem of identifying air target intent on the modern battlefield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信