Nitai Chandra Adak, Suman Chhetri, N. C. Murmu, P. Samanta, Tapas Kuila, Wonoh Lee
{"title":"氧化石墨烯杂化高性能弹性体纳米复合材料的研制","authors":"Nitai Chandra Adak, Suman Chhetri, N. C. Murmu, P. Samanta, Tapas Kuila, Wonoh Lee","doi":"10.1080/09243046.2022.2150801","DOIUrl":null,"url":null,"abstract":"The use of graphene sheets as a reinforcing agent in polymeric nanocomposites is increasing owing to their exceptional mechanical and thermal properties. Herein, graphene oxide (GO) is used as the reinforcing material in natural rubber (NR)/GO elastomeric nanocomposites to enhance the mechanical and thermomechanical properties of the composites. NR/GO composites of different compositions were prepared through consecutive melt-mixing and two-roll mixing processes. Mechanical, thermomechanical, and thermal stability studies of the prepared composites were carried out in accordance with ASTM standards. The incorporation of only 5 wt.% GO in the NR elastomer led to a 72–76% improvement in the tensile strength of the NR/GO composites. Simultaneously, the viscoelastic properties, namely storage modulus ( ), loss modulus ( ), and glass transition temperature ( ) of the composites improved, and thermal decomposition of the composites decreased because of excellent interaction between the polymeric networks of the elastomers and the GO sheets.","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of graphene oxide hybridized high-performance elastomeric nanocomposites with enhanced mechanical and thermomechanical properties\",\"authors\":\"Nitai Chandra Adak, Suman Chhetri, N. C. Murmu, P. Samanta, Tapas Kuila, Wonoh Lee\",\"doi\":\"10.1080/09243046.2022.2150801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of graphene sheets as a reinforcing agent in polymeric nanocomposites is increasing owing to their exceptional mechanical and thermal properties. Herein, graphene oxide (GO) is used as the reinforcing material in natural rubber (NR)/GO elastomeric nanocomposites to enhance the mechanical and thermomechanical properties of the composites. NR/GO composites of different compositions were prepared through consecutive melt-mixing and two-roll mixing processes. Mechanical, thermomechanical, and thermal stability studies of the prepared composites were carried out in accordance with ASTM standards. The incorporation of only 5 wt.% GO in the NR elastomer led to a 72–76% improvement in the tensile strength of the NR/GO composites. Simultaneously, the viscoelastic properties, namely storage modulus ( ), loss modulus ( ), and glass transition temperature ( ) of the composites improved, and thermal decomposition of the composites decreased because of excellent interaction between the polymeric networks of the elastomers and the GO sheets.\",\"PeriodicalId\":7291,\"journal\":{\"name\":\"Advanced Composite Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09243046.2022.2150801\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09243046.2022.2150801","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Development of graphene oxide hybridized high-performance elastomeric nanocomposites with enhanced mechanical and thermomechanical properties
The use of graphene sheets as a reinforcing agent in polymeric nanocomposites is increasing owing to their exceptional mechanical and thermal properties. Herein, graphene oxide (GO) is used as the reinforcing material in natural rubber (NR)/GO elastomeric nanocomposites to enhance the mechanical and thermomechanical properties of the composites. NR/GO composites of different compositions were prepared through consecutive melt-mixing and two-roll mixing processes. Mechanical, thermomechanical, and thermal stability studies of the prepared composites were carried out in accordance with ASTM standards. The incorporation of only 5 wt.% GO in the NR elastomer led to a 72–76% improvement in the tensile strength of the NR/GO composites. Simultaneously, the viscoelastic properties, namely storage modulus ( ), loss modulus ( ), and glass transition temperature ( ) of the composites improved, and thermal decomposition of the composites decreased because of excellent interaction between the polymeric networks of the elastomers and the GO sheets.
期刊介绍:
"Advanced Composite Materials (ACM), a bi-monthly publication of the Japan Society for Composite Materials and the Korean Society for Composite Materials, provides an international forum for researchers, manufacturers and designers who are working in the field of composite materials and their structures. Issues contain articles on all aspects of current scientific and technological progress in this interdisciplinary field. The topics of interest are physical, chemical, mechanical and other properties of advanced composites as well as their constituent materials; experimental and theoretical studies relating microscopic to macroscopic behavior; testing and evaluation with emphasis on environmental effects and reliability; novel techniques of fabricating various types of composites and of forming structural components utilizing these materials; design and analysis for specific applications.
Advanced Composite Materials publishes refereed original research papers, review papers, technical papers and short notes as well as some translated papers originally published in the Journal of the Japan Society for Composite Materials. Issues also contain news items such as information on new materials and their processing."