{"title":"认知位置逻辑的表系统","authors":"Mateusz Klonowski, K. Krawczyk, Bożena Piȩta","doi":"10.18778/0138-0680.2021.06","DOIUrl":null,"url":null,"abstract":"The goal of the article is twofold. The first one is to provide logics based on positional semantics which will be suitable for the analysis of epistemic modalities such as ‘agent ... knows/beliefs that ...’. The second one is to define tableau systemsfor such logics. Firstly, we present the minimal positional logic MR. Then, we change the notion of formulas and semantics in order to consider iterations of the operator of realization and “free” classical formulas. After that, we move on to weaker logics in order to avoid the well known problem of logical omniscience. At the same time, we keep the positional counterparts of modal axioms (T), (4) and (5). For all of the considered logics we present sound and complete tableau systems.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tableau Systems for Epistemic Positional Logics\",\"authors\":\"Mateusz Klonowski, K. Krawczyk, Bożena Piȩta\",\"doi\":\"10.18778/0138-0680.2021.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of the article is twofold. The first one is to provide logics based on positional semantics which will be suitable for the analysis of epistemic modalities such as ‘agent ... knows/beliefs that ...’. The second one is to define tableau systemsfor such logics. Firstly, we present the minimal positional logic MR. Then, we change the notion of formulas and semantics in order to consider iterations of the operator of realization and “free” classical formulas. After that, we move on to weaker logics in order to avoid the well known problem of logical omniscience. At the same time, we keep the positional counterparts of modal axioms (T), (4) and (5). For all of the considered logics we present sound and complete tableau systems.\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.2021.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2021.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
The goal of the article is twofold. The first one is to provide logics based on positional semantics which will be suitable for the analysis of epistemic modalities such as ‘agent ... knows/beliefs that ...’. The second one is to define tableau systemsfor such logics. Firstly, we present the minimal positional logic MR. Then, we change the notion of formulas and semantics in order to consider iterations of the operator of realization and “free” classical formulas. After that, we move on to weaker logics in order to avoid the well known problem of logical omniscience. At the same time, we keep the positional counterparts of modal axioms (T), (4) and (5). For all of the considered logics we present sound and complete tableau systems.