{"title":"关于Dirichlet双二次域","authors":"'Etienne Fouvry, P. Koymans","doi":"10.5802/jtnb.1220","DOIUrl":null,"url":null,"abstract":"We study the $4$-rank of the ideal class group of $K_n := \\mathbb{Q}(\\sqrt{-n}, \\sqrt{n})$. Our main result is that for a positive proportion of the squarefree integers $n$ we have that the $4$-rank of $\\text{Cl}(K_n)$ equals $\\omega_3(n) - 1$, where $\\omega_3(n)$ is the number of prime divisors of $n$ that are $3$ modulo $4$.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Dirichlet biquadratic fields\",\"authors\":\"'Etienne Fouvry, P. Koymans\",\"doi\":\"10.5802/jtnb.1220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the $4$-rank of the ideal class group of $K_n := \\\\mathbb{Q}(\\\\sqrt{-n}, \\\\sqrt{n})$. Our main result is that for a positive proportion of the squarefree integers $n$ we have that the $4$-rank of $\\\\text{Cl}(K_n)$ equals $\\\\omega_3(n) - 1$, where $\\\\omega_3(n)$ is the number of prime divisors of $n$ that are $3$ modulo $4$.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1220\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1220","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study the $4$-rank of the ideal class group of $K_n := \mathbb{Q}(\sqrt{-n}, \sqrt{n})$. Our main result is that for a positive proportion of the squarefree integers $n$ we have that the $4$-rank of $\text{Cl}(K_n)$ equals $\omega_3(n) - 1$, where $\omega_3(n)$ is the number of prime divisors of $n$ that are $3$ modulo $4$.