在大规模的国家政策实验中嵌入概念验证测试:更多的政策学习,但统计能力的代价是什么?社会保障局福利抵扣全国示范(BOND)

IF 1.1 3区 社会学 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY
S. Bell, D. Stapleton, M. Wood, Daniel Gubits
{"title":"在大规模的国家政策实验中嵌入概念验证测试:更多的政策学习,但统计能力的代价是什么?社会保障局福利抵扣全国示范(BOND)","authors":"S. Bell, D. Stapleton, M. Wood, Daniel Gubits","doi":"10.1177/10982140211006786","DOIUrl":null,"url":null,"abstract":"A randomized experiment that measures the impact of a social policy in a sample of the population reveals whether the policy will work on average with universal application. An experiment that includes only the subset of the population that volunteers for the intervention generates narrower “proof-of-concept” evidence of whether the policy can work for motivated individuals. Both forms of learning carry value, yet evaluations rarely combine the two designs. The U.S. Social Security Administration conducted an exception, the Benefit Offset National Demonstration (BOND). This article uses BOND to examine the statistical power implications and potential gains in policy learning—relative to costs—from combining volunteer and population-representative experiments. It finds that minimum detectable effects of volunteer experiments rise little when one adds a population-representative experiment, but those of a population-representative experiment double or quadruple with the addition of a volunteer experiment.","PeriodicalId":51449,"journal":{"name":"American Journal of Evaluation","volume":"44 1","pages":"118 - 132"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Embedding a Proof-of-Concept Test in an At-Scale National Policy Experiment: Greater Policy Learning But at What Cost to Statistical Power? The Social Security Administration’s Benefit Offset National Demonstration (BOND)\",\"authors\":\"S. Bell, D. Stapleton, M. Wood, Daniel Gubits\",\"doi\":\"10.1177/10982140211006786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A randomized experiment that measures the impact of a social policy in a sample of the population reveals whether the policy will work on average with universal application. An experiment that includes only the subset of the population that volunteers for the intervention generates narrower “proof-of-concept” evidence of whether the policy can work for motivated individuals. Both forms of learning carry value, yet evaluations rarely combine the two designs. The U.S. Social Security Administration conducted an exception, the Benefit Offset National Demonstration (BOND). This article uses BOND to examine the statistical power implications and potential gains in policy learning—relative to costs—from combining volunteer and population-representative experiments. It finds that minimum detectable effects of volunteer experiments rise little when one adds a population-representative experiment, but those of a population-representative experiment double or quadruple with the addition of a volunteer experiment.\",\"PeriodicalId\":51449,\"journal\":{\"name\":\"American Journal of Evaluation\",\"volume\":\"44 1\",\"pages\":\"118 - 132\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Evaluation\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/10982140211006786\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Evaluation","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/10982140211006786","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

一项随机实验在人群样本中测量了社会政策的影响,揭示了该政策是否能在普遍应用的情况下平均发挥作用。一项只包括自愿参与干预的人群子集的实验产生了更窄的“概念证明”证据,证明该政策是否适用于有动机的个人。这两种学习形式都有价值,但评估很少将这两种设计结合起来。美国社会保障管理局实施了一项例外,即福利抵消全国示范(BOND)。本文使用BOND来检验志愿者和人群代表性实验相结合在政策学习中的统计权力含义和潜在收益(相对于成本)。研究发现,当增加一个具有群体代表性的实验时,志愿者实验的最小可检测效果几乎没有增加,但随着志愿者实验的增加,群体代表性实验的最小检测效果增加了一倍或四倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding a Proof-of-Concept Test in an At-Scale National Policy Experiment: Greater Policy Learning But at What Cost to Statistical Power? The Social Security Administration’s Benefit Offset National Demonstration (BOND)
A randomized experiment that measures the impact of a social policy in a sample of the population reveals whether the policy will work on average with universal application. An experiment that includes only the subset of the population that volunteers for the intervention generates narrower “proof-of-concept” evidence of whether the policy can work for motivated individuals. Both forms of learning carry value, yet evaluations rarely combine the two designs. The U.S. Social Security Administration conducted an exception, the Benefit Offset National Demonstration (BOND). This article uses BOND to examine the statistical power implications and potential gains in policy learning—relative to costs—from combining volunteer and population-representative experiments. It finds that minimum detectable effects of volunteer experiments rise little when one adds a population-representative experiment, but those of a population-representative experiment double or quadruple with the addition of a volunteer experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Evaluation
American Journal of Evaluation SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
4.40
自引率
11.80%
发文量
39
期刊介绍: The American Journal of Evaluation (AJE) publishes original papers about the methods, theory, practice, and findings of evaluation. The general goal of AJE is to present the best work in and about evaluation, in order to improve the knowledge base and practice of its readers. Because the field of evaluation is diverse, with different intellectual traditions, approaches to practice, and domains of application, the papers published in AJE will reflect this diversity. Nevertheless, preference is given to papers that are likely to be of interest to a wide range of evaluators and that are written to be accessible to most readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信