{"title":"分支布朗运动在两个温度下的重叠分布","authors":"Benjamin Bonnefont","doi":"10.1214/22-ejp841","DOIUrl":null,"url":null,"abstract":"We study the overlap distribution of two particles chosen under the Gibbs measure at two temperatures for the branching Brownian motion. We first prove the convergence of the overlap distribution using the extended convergence of the extremal process obtained by Bovier and Hartung [8]. We then prove that the mean overlap of two points chosen at different temperatures is strictly smaller than in Derrida’s random energy model. The proof of this last result is achieved with the description of the decoration point process obtained by Aïdékon, Berestycki, Brunet and Shi [1]. To our knowledge, it is the first time that this description is being used. Keywords— Branching Brownian motion, Gibbs measure, overlap distribution, random energy model.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The overlap distribution at two temperatures for the branching Brownian motion\",\"authors\":\"Benjamin Bonnefont\",\"doi\":\"10.1214/22-ejp841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the overlap distribution of two particles chosen under the Gibbs measure at two temperatures for the branching Brownian motion. We first prove the convergence of the overlap distribution using the extended convergence of the extremal process obtained by Bovier and Hartung [8]. We then prove that the mean overlap of two points chosen at different temperatures is strictly smaller than in Derrida’s random energy model. The proof of this last result is achieved with the description of the decoration point process obtained by Aïdékon, Berestycki, Brunet and Shi [1]. To our knowledge, it is the first time that this description is being used. Keywords— Branching Brownian motion, Gibbs measure, overlap distribution, random energy model.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ejp841\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejp841","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The overlap distribution at two temperatures for the branching Brownian motion
We study the overlap distribution of two particles chosen under the Gibbs measure at two temperatures for the branching Brownian motion. We first prove the convergence of the overlap distribution using the extended convergence of the extremal process obtained by Bovier and Hartung [8]. We then prove that the mean overlap of two points chosen at different temperatures is strictly smaller than in Derrida’s random energy model. The proof of this last result is achieved with the description of the decoration point process obtained by Aïdékon, Berestycki, Brunet and Shi [1]. To our knowledge, it is the first time that this description is being used. Keywords— Branching Brownian motion, Gibbs measure, overlap distribution, random energy model.
期刊介绍:
The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory.
Both ECP and EJP are official journals of the Institute of Mathematical Statistics
and the Bernoulli society.