Morse势扰动的Weyl渐近性及其与Riemann-zeta函数的联系

IF 0.3 Q4 MATHEMATICS
R. Rahm
{"title":"Morse势扰动的Weyl渐近性及其与Riemann-zeta函数的联系","authors":"R. Rahm","doi":"10.1515/conop-2022-0139","DOIUrl":null,"url":null,"abstract":"Abstract Let N ( T ; V ) N\\left(T;\\hspace{0.33em}V) denote the number of eigenvalues of the Schrödinger operator − y ″ + V y -{y}^{^{\\prime\\prime} }+Vy with absolute value less than T T . This article studies the Weyl asymptotics of perturbations of the Schrödinger operator − y ″ + 1 4 e 2 t y -{y}^{^{\\prime\\prime} }+\\frac{1}{4}{e}^{2t}y on [ x 0 , ∞ ) \\left[{x}_{0},\\infty ) . In particular, we show that perturbations by functions ε ( t ) \\varepsilon \\left(t) that satisfy ∣ ε ( t ) ∣ ≲ e t | \\varepsilon \\left(t)| \\hspace{0.33em}\\lesssim \\hspace{0.33em}{e}^{t} do not change the Weyl asymptotics very much. Special emphasis is placed on connections to the asymptotics of the zeros of the Riemann zeta function.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weyl asymptotics for perturbations of Morse potential and connections to the Riemann zeta function\",\"authors\":\"R. Rahm\",\"doi\":\"10.1515/conop-2022-0139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let N ( T ; V ) N\\\\left(T;\\\\hspace{0.33em}V) denote the number of eigenvalues of the Schrödinger operator − y ″ + V y -{y}^{^{\\\\prime\\\\prime} }+Vy with absolute value less than T T . This article studies the Weyl asymptotics of perturbations of the Schrödinger operator − y ″ + 1 4 e 2 t y -{y}^{^{\\\\prime\\\\prime} }+\\\\frac{1}{4}{e}^{2t}y on [ x 0 , ∞ ) \\\\left[{x}_{0},\\\\infty ) . In particular, we show that perturbations by functions ε ( t ) \\\\varepsilon \\\\left(t) that satisfy ∣ ε ( t ) ∣ ≲ e t | \\\\varepsilon \\\\left(t)| \\\\hspace{0.33em}\\\\lesssim \\\\hspace{0.33em}{e}^{t} do not change the Weyl asymptotics very much. Special emphasis is placed on connections to the asymptotics of the zeros of the Riemann zeta function.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2022-0139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2022-0139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

抽象设N(T;V)N\left(T;\space{0.33em}V)表示Schrödinger算子−y〃+Vy-{y}^{^{\prime\prime}}+Vy的绝对值小于T的特征值的个数。本文研究Schrödinger算子−y〃+14e2t y-{y}^的扰动的Weyl渐近性^{2t}y在[x 0,∞)\left[{x}_{0},\infty)。特别地,我们证明了函数ε(t)\varepsilon\left(t)的扰动,其满足Şε(t。特别强调了与黎曼ζ函数的零的渐近性的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weyl asymptotics for perturbations of Morse potential and connections to the Riemann zeta function
Abstract Let N ( T ; V ) N\left(T;\hspace{0.33em}V) denote the number of eigenvalues of the Schrödinger operator − y ″ + V y -{y}^{^{\prime\prime} }+Vy with absolute value less than T T . This article studies the Weyl asymptotics of perturbations of the Schrödinger operator − y ″ + 1 4 e 2 t y -{y}^{^{\prime\prime} }+\frac{1}{4}{e}^{2t}y on [ x 0 , ∞ ) \left[{x}_{0},\infty ) . In particular, we show that perturbations by functions ε ( t ) \varepsilon \left(t) that satisfy ∣ ε ( t ) ∣ ≲ e t | \varepsilon \left(t)| \hspace{0.33em}\lesssim \hspace{0.33em}{e}^{t} do not change the Weyl asymptotics very much. Special emphasis is placed on connections to the asymptotics of the zeros of the Riemann zeta function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信