潜在低秩稀疏多视图子空间聚类

Q4 Computer Science
张茁涵, 曹容玮, 李晨, 程士卿
{"title":"潜在低秩稀疏多视图子空间聚类","authors":"张茁涵, 曹容玮, 李晨, 程士卿","doi":"10.16451/J.CNKI.ISSN1003-6059.202004007","DOIUrl":null,"url":null,"abstract":"To solve the problem of multi-view clustering,a latent low-rank sparse multi-view subspace clustering(LLSMSC)algorithm is proposed.A latent space shared by all views is constructed to explore the complementary information of multi-view data.The global and local structure of multi-view data can be captured to attain promising clustering results by imposing low-rank constraint and sparse constraint on the implicit latent subspace representation simultaneously.An algorithm based on augmented Lagrangian multiplier with alternating direction minimization strategy is employed to solve the optimization problem.Experiments on six benchmark datasets verify the effectiveness and superiority of LLSMSC.","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Low-Rank Sparse Multi-view Subspace Clustering\",\"authors\":\"张茁涵, 曹容玮, 李晨, 程士卿\",\"doi\":\"10.16451/J.CNKI.ISSN1003-6059.202004007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of multi-view clustering,a latent low-rank sparse multi-view subspace clustering(LLSMSC)algorithm is proposed.A latent space shared by all views is constructed to explore the complementary information of multi-view data.The global and local structure of multi-view data can be captured to attain promising clustering results by imposing low-rank constraint and sparse constraint on the implicit latent subspace representation simultaneously.An algorithm based on augmented Lagrangian multiplier with alternating direction minimization strategy is employed to solve the optimization problem.Experiments on six benchmark datasets verify the effectiveness and superiority of LLSMSC.\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202004007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202004007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

为了解决多视图聚类问题,提出了一种潜在低秩稀疏多视图子空间聚类算法(LLSMSC)。构建了所有视图共享的潜在空间,以探索多视图数据的互补信息。通过对隐式潜子空间表示同时施加低秩约束和稀疏约束,可以捕获多视图数据的全局和局部结构,从而获得较好的聚类结果。采用增广拉格朗日乘子和交替方向最小化策略求解优化问题。在六个基准数据集上的实验验证了LLSMSC的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Low-Rank Sparse Multi-view Subspace Clustering
To solve the problem of multi-view clustering,a latent low-rank sparse multi-view subspace clustering(LLSMSC)algorithm is proposed.A latent space shared by all views is constructed to explore the complementary information of multi-view data.The global and local structure of multi-view data can be captured to attain promising clustering results by imposing low-rank constraint and sparse constraint on the implicit latent subspace representation simultaneously.An algorithm based on augmented Lagrangian multiplier with alternating direction minimization strategy is employed to solve the optimization problem.Experiments on six benchmark datasets verify the effectiveness and superiority of LLSMSC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信