从爱因斯坦方程的推广推导出几个二阶偏微分方程

IF 0.5 4区 数学 Q3 MATHEMATICS
Makoto Nakamura
{"title":"从爱因斯坦方程的推广推导出几个二阶偏微分方程","authors":"Makoto Nakamura","doi":"10.18910/75916","DOIUrl":null,"url":null,"abstract":"A generalization of the Einstein equations with the cosmological constant is considered for complex line elements. Several second order semilinear partial differential equations are derived from them as semilinear field equations in homogeneous and isotropic spaces. The nonrelativistic limits of the field equations are also considered. The properties of spatial expansion and contraction are studied based on energy estimates of the field equations. Several dissipative and anti-dissipative properties are remarked.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"57 1","pages":"305-331"},"PeriodicalIF":0.5000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"REMARKS ON THE DERIVATION OF SEVERAL SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS FROM A GENERALIZATION OF THE EINSTEIN EQUATIONS\",\"authors\":\"Makoto Nakamura\",\"doi\":\"10.18910/75916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalization of the Einstein equations with the cosmological constant is considered for complex line elements. Several second order semilinear partial differential equations are derived from them as semilinear field equations in homogeneous and isotropic spaces. The nonrelativistic limits of the field equations are also considered. The properties of spatial expansion and contraction are studied based on energy estimates of the field equations. Several dissipative and anti-dissipative properties are remarked.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"57 1\",\"pages\":\"305-331\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/75916\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/75916","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

对复线元考虑了带宇宙学常数的爱因斯坦方程的推广。在齐次和各向同性空间中,以半线性场方程的形式导出了若干二阶半线性偏微分方程。本文还考虑了场方程的非相对论性极限。基于场方程的能量估计,研究了空间膨胀和收缩的性质。讨论了几个耗散和反耗散性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REMARKS ON THE DERIVATION OF SEVERAL SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS FROM A GENERALIZATION OF THE EINSTEIN EQUATIONS
A generalization of the Einstein equations with the cosmological constant is considered for complex line elements. Several second order semilinear partial differential equations are derived from them as semilinear field equations in homogeneous and isotropic spaces. The nonrelativistic limits of the field equations are also considered. The properties of spatial expansion and contraction are studied based on energy estimates of the field equations. Several dissipative and anti-dissipative properties are remarked.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信