一类所有非幂零极大子群均为正规的有限群具有西洛塔

IF 0.6 4区 数学 Q3 MATHEMATICS
Jiangtao Shi
{"title":"一类所有非幂零极大子群均为正规的有限群具有西洛塔","authors":"Jiangtao Shi","doi":"10.14492/HOKMJ/1562810510","DOIUrl":null,"url":null,"abstract":"In this paper we prove that a finite group in which all non-nilpotent maximal subgroups are normal must have a Sylow tower, which improves Theorem 1.3 of [Finite groups with non-nilpotent maximal subgroups, Monatsh Math. 171 (2013) 425–431.].","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A finite group in which all non-nilpotent maximal subgroups are normal has a Sylow tower\",\"authors\":\"Jiangtao Shi\",\"doi\":\"10.14492/HOKMJ/1562810510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove that a finite group in which all non-nilpotent maximal subgroups are normal must have a Sylow tower, which improves Theorem 1.3 of [Finite groups with non-nilpotent maximal subgroups, Monatsh Math. 171 (2013) 425–431.].\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/HOKMJ/1562810510\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/HOKMJ/1562810510","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们证明了其中所有非幂零极大子群都是正规的有限群必须具有Sylow塔,这改进了[具有非幂零最大子群的有限群,Monatsh Math.171(2013)425–431]的定理1.3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A finite group in which all non-nilpotent maximal subgroups are normal has a Sylow tower
In this paper we prove that a finite group in which all non-nilpotent maximal subgroups are normal must have a Sylow tower, which improves Theorem 1.3 of [Finite groups with non-nilpotent maximal subgroups, Monatsh Math. 171 (2013) 425–431.].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信