{"title":"一类所有非幂零极大子群均为正规的有限群具有西洛塔","authors":"Jiangtao Shi","doi":"10.14492/HOKMJ/1562810510","DOIUrl":null,"url":null,"abstract":"In this paper we prove that a finite group in which all non-nilpotent maximal subgroups are normal must have a Sylow tower, which improves Theorem 1.3 of [Finite groups with non-nilpotent maximal subgroups, Monatsh Math. 171 (2013) 425–431.].","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A finite group in which all non-nilpotent maximal subgroups are normal has a Sylow tower\",\"authors\":\"Jiangtao Shi\",\"doi\":\"10.14492/HOKMJ/1562810510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove that a finite group in which all non-nilpotent maximal subgroups are normal must have a Sylow tower, which improves Theorem 1.3 of [Finite groups with non-nilpotent maximal subgroups, Monatsh Math. 171 (2013) 425–431.].\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/HOKMJ/1562810510\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/HOKMJ/1562810510","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A finite group in which all non-nilpotent maximal subgroups are normal has a Sylow tower
In this paper we prove that a finite group in which all non-nilpotent maximal subgroups are normal must have a Sylow tower, which improves Theorem 1.3 of [Finite groups with non-nilpotent maximal subgroups, Monatsh Math. 171 (2013) 425–431.].
期刊介绍:
The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.