扩展群数据处理方法在功放建模中的选择算法

Q4 Engineering
Ana Paula Princival Machado, V. Nypwipwy, C. Franca, E. G. Lima
{"title":"扩展群数据处理方法在功放建模中的选择算法","authors":"Ana Paula Princival Machado, V. Nypwipwy, C. Franca, E. G. Lima","doi":"10.29292/jics.v17i2.544","DOIUrl":null,"url":null,"abstract":"Power amplifiers (PAs) are electronic devices commonly used in telecommunications that need to transmit information with high energetic efficiency. For this, it is necessary to use data manipulation methods that assist in the linearization of the output signal. Our previous conference paper presented two codes constructed based on the Group Method of Data Handling (GMDH) and which differ in their way of selecting the best coefficients to be used in the calculations of the neural network. The first method, called Embracing, assumes greater availability of data, while the second, called Selective, selects information from the beginning of the code. This work extends the previous GMDH models by expanding the PA inputs into Laguerre basis functions with a single real pole. The comparison among the different approaches employs experimental data collected from a GaN HEMT class AB PA and a Si LDMOS class AB. The most selective and computationally more complex structure, when searching for identification since from the first layers, expresses minor errors and the best results in the output for both Conventional and Expanded GMDH models, becoming a reasoned option for use in PAs. A normalized mean square error (NMSE) of -35.44 dB was obtained by Expanded GMDH with Selective algorithm and 5 inputs when using the GaN PA, whereas a NMSE of -40.35 dB was obtained by the Expanded GMDH with Selective algorithm and 4 inputs when calculated with the Si LDMOS PA data.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective Algorithm for Expanded Group Method of Data Handling Applied to Power Amplifier Modeling\",\"authors\":\"Ana Paula Princival Machado, V. Nypwipwy, C. Franca, E. G. Lima\",\"doi\":\"10.29292/jics.v17i2.544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power amplifiers (PAs) are electronic devices commonly used in telecommunications that need to transmit information with high energetic efficiency. For this, it is necessary to use data manipulation methods that assist in the linearization of the output signal. Our previous conference paper presented two codes constructed based on the Group Method of Data Handling (GMDH) and which differ in their way of selecting the best coefficients to be used in the calculations of the neural network. The first method, called Embracing, assumes greater availability of data, while the second, called Selective, selects information from the beginning of the code. This work extends the previous GMDH models by expanding the PA inputs into Laguerre basis functions with a single real pole. The comparison among the different approaches employs experimental data collected from a GaN HEMT class AB PA and a Si LDMOS class AB. The most selective and computationally more complex structure, when searching for identification since from the first layers, expresses minor errors and the best results in the output for both Conventional and Expanded GMDH models, becoming a reasoned option for use in PAs. A normalized mean square error (NMSE) of -35.44 dB was obtained by Expanded GMDH with Selective algorithm and 5 inputs when using the GaN PA, whereas a NMSE of -40.35 dB was obtained by the Expanded GMDH with Selective algorithm and 4 inputs when calculated with the Si LDMOS PA data.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v17i2.544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v17i2.544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

功率放大器(PA)是电信中常用的电子设备,需要以高能量效率传输信息。为此,有必要使用有助于输出信号线性化的数据处理方法。我们之前的会议论文介绍了两个基于数据处理分组方法(GMDH)构建的代码,它们在选择神经网络计算中使用的最佳系数方面有所不同。第一种方法名为Embracing,假设数据的可用性更高,而第二种方法称为Selective,从代码的开头选择信息。这项工作通过将PA输入扩展到具有单个实极点的拉盖尔基函数来扩展先前的GMDH模型。不同方法之间的比较采用了从GaN HEMT AB类PA和Si LDMOS AB类收集的实验数据。当从第一层开始搜索识别时,最具选择性和计算上更复杂的结构在常规和扩展的GMDH模型的输出中都表现出较小的误差和最佳结果,成为在PA中使用的合理选择。当使用GaN PA时,通过具有选择性算法的扩展GMDH和5个输入获得了-35.44dB的归一化均方误差(NMSE),而当使用Si LDMOS PA数据计算时,通过带有选择性算法的扩充GMDH和4个输入获得的NMSE为-40.35dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selective Algorithm for Expanded Group Method of Data Handling Applied to Power Amplifier Modeling
Power amplifiers (PAs) are electronic devices commonly used in telecommunications that need to transmit information with high energetic efficiency. For this, it is necessary to use data manipulation methods that assist in the linearization of the output signal. Our previous conference paper presented two codes constructed based on the Group Method of Data Handling (GMDH) and which differ in their way of selecting the best coefficients to be used in the calculations of the neural network. The first method, called Embracing, assumes greater availability of data, while the second, called Selective, selects information from the beginning of the code. This work extends the previous GMDH models by expanding the PA inputs into Laguerre basis functions with a single real pole. The comparison among the different approaches employs experimental data collected from a GaN HEMT class AB PA and a Si LDMOS class AB. The most selective and computationally more complex structure, when searching for identification since from the first layers, expresses minor errors and the best results in the output for both Conventional and Expanded GMDH models, becoming a reasoned option for use in PAs. A normalized mean square error (NMSE) of -35.44 dB was obtained by Expanded GMDH with Selective algorithm and 5 inputs when using the GaN PA, whereas a NMSE of -40.35 dB was obtained by the Expanded GMDH with Selective algorithm and 4 inputs when calculated with the Si LDMOS PA data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信