冷电子束等离子体中的孤立子

Q4 Engineering
Ugnė Orinaitė, J. Ragulskiene
{"title":"冷电子束等离子体中的孤立子","authors":"Ugnė Orinaitė, J. Ragulskiene","doi":"10.21595/mme.2022.23115","DOIUrl":null,"url":null,"abstract":"Necessary and sufficient conditions for the existence of dissipative electron-acoustic solitons in a cold electron beam plasma with superthermal trapped electrons described by the Schamel equation are derived in this paper. Soliton solutions to the Schamel equation are constructed using formal analytical techniques which yield counter-intuitive conditions for the existence of these solutions. The existence conditions are derived in terms of system parameters and initial conditions. Computational experiments are used to validate the obtained results.","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solitons in a cold electron beam plasma\",\"authors\":\"Ugnė Orinaitė, J. Ragulskiene\",\"doi\":\"10.21595/mme.2022.23115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Necessary and sufficient conditions for the existence of dissipative electron-acoustic solitons in a cold electron beam plasma with superthermal trapped electrons described by the Schamel equation are derived in this paper. Soliton solutions to the Schamel equation are constructed using formal analytical techniques which yield counter-intuitive conditions for the existence of these solutions. The existence conditions are derived in terms of system parameters and initial conditions. Computational experiments are used to validate the obtained results.\",\"PeriodicalId\":32958,\"journal\":{\"name\":\"Mathematical Models in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/mme.2022.23115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/mme.2022.23115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

导出了用Schamel方程描述的具有超热俘获电子的冷电子束等离子体中耗散电子-声孤子存在的充分必要条件。Schamel方程的孤子解是用形式解析技术构造的,它产生了这些解存在的反直觉条件。导出了系统参数和初始条件的存在条件。计算实验对所得结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solitons in a cold electron beam plasma
Necessary and sufficient conditions for the existence of dissipative electron-acoustic solitons in a cold electron beam plasma with superthermal trapped electrons described by the Schamel equation are derived in this paper. Soliton solutions to the Schamel equation are constructed using formal analytical techniques which yield counter-intuitive conditions for the existence of these solutions. The existence conditions are derived in terms of system parameters and initial conditions. Computational experiments are used to validate the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
8
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信