D. Small, M. J. Bentley, D. Evans, A. Hein, S. Freeman
{"title":"南极洲彭萨科拉山脉海王星山脉的无冰山谷:冰川地貌、地质年代学和作为古环境档案的潜力","authors":"D. Small, M. J. Bentley, D. Evans, A. Hein, S. Freeman","doi":"10.1017/S0954102021000237","DOIUrl":null,"url":null,"abstract":"Abstract We describe the glacial geomorphology and initial geochronology of two ice-free valley systems within the Neptune Range of the Pensacola Mountains, Antarctica. These valleys are characterized by landforms associated with formerly more expanded ice sheet(s) that were at least 200 m thicker than at present. The most conspicuous features are areas of supraglacial debris, discrete debris accumulations separated from modern-day ice and curvilinear ridges and mounds. The landsystem bears similarities to debris-rich cold-based glacial landsystems described elsewhere in Antarctica and the Arctic where buried ice is prevalent. Geochronological data demonstrate multiple phases of ice expansion. The oldest, occurring > 3 Ma, overtopped much of the landscape. Subsequent, less expansive advances into the valleys occurred > 2 Ma and > ~1 Ma. An expansion of some local glaciers occurred < 250 ka. This sequence of glacial stages is similar to that described from the northernmost massif of the Pensacola Mountains (Dufek Massif), suggesting that it represents a regional signal of ice-sheet evolution over the Plio-Pleistocene. The geomorphological record and its evolution over millions of years makes the Neptune Range valleys an area worthy of future research and we highlight potential avenues for this.","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"33 1","pages":"428 - 455"},"PeriodicalIF":2.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0954102021000237","citationCount":"1","resultStr":"{\"title\":\"Ice-free valleys in the Neptune Range of the Pensacola Mountains, Antarctica: glacial geomorphology, geochronology and potential as palaeoenvironmental archives\",\"authors\":\"D. Small, M. J. Bentley, D. Evans, A. Hein, S. Freeman\",\"doi\":\"10.1017/S0954102021000237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We describe the glacial geomorphology and initial geochronology of two ice-free valley systems within the Neptune Range of the Pensacola Mountains, Antarctica. These valleys are characterized by landforms associated with formerly more expanded ice sheet(s) that were at least 200 m thicker than at present. The most conspicuous features are areas of supraglacial debris, discrete debris accumulations separated from modern-day ice and curvilinear ridges and mounds. The landsystem bears similarities to debris-rich cold-based glacial landsystems described elsewhere in Antarctica and the Arctic where buried ice is prevalent. Geochronological data demonstrate multiple phases of ice expansion. The oldest, occurring > 3 Ma, overtopped much of the landscape. Subsequent, less expansive advances into the valleys occurred > 2 Ma and > ~1 Ma. An expansion of some local glaciers occurred < 250 ka. This sequence of glacial stages is similar to that described from the northernmost massif of the Pensacola Mountains (Dufek Massif), suggesting that it represents a regional signal of ice-sheet evolution over the Plio-Pleistocene. The geomorphological record and its evolution over millions of years makes the Neptune Range valleys an area worthy of future research and we highlight potential avenues for this.\",\"PeriodicalId\":50972,\"journal\":{\"name\":\"Antarctic Science\",\"volume\":\"33 1\",\"pages\":\"428 - 455\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0954102021000237\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antarctic Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/S0954102021000237\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antarctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/S0954102021000237","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ice-free valleys in the Neptune Range of the Pensacola Mountains, Antarctica: glacial geomorphology, geochronology and potential as palaeoenvironmental archives
Abstract We describe the glacial geomorphology and initial geochronology of two ice-free valley systems within the Neptune Range of the Pensacola Mountains, Antarctica. These valleys are characterized by landforms associated with formerly more expanded ice sheet(s) that were at least 200 m thicker than at present. The most conspicuous features are areas of supraglacial debris, discrete debris accumulations separated from modern-day ice and curvilinear ridges and mounds. The landsystem bears similarities to debris-rich cold-based glacial landsystems described elsewhere in Antarctica and the Arctic where buried ice is prevalent. Geochronological data demonstrate multiple phases of ice expansion. The oldest, occurring > 3 Ma, overtopped much of the landscape. Subsequent, less expansive advances into the valleys occurred > 2 Ma and > ~1 Ma. An expansion of some local glaciers occurred < 250 ka. This sequence of glacial stages is similar to that described from the northernmost massif of the Pensacola Mountains (Dufek Massif), suggesting that it represents a regional signal of ice-sheet evolution over the Plio-Pleistocene. The geomorphological record and its evolution over millions of years makes the Neptune Range valleys an area worthy of future research and we highlight potential avenues for this.
期刊介绍:
Antarctic Science provides a truly international forum for the broad spread of studies that increasingly characterise scientific research in the Antarctic. Whilst emphasising interdisciplinary work, the journal publishes papers from environmental management to biodiversity, from volcanoes to icebergs, and from oceanography to the upper atmosphere. No other journal covers such a wide range of Antarctic scientific studies. The journal attracts papers from all countries currently undertaking Antarctic research. It publishes both review and data papers with no limits on length, two-page short notes on technical developments and recent discoveries, and book reviews. These, together with an editorial discussing broader aspects of science, provide a rich and varied mixture of items to interest researchers in all areas of science. There are no page charges, or charges for colour, to authors publishing in the Journal. One issue each year is normally devoted to a specific theme or papers from a major meeting.