添加乙酸提高热带杏仁糊生物电池性能

Graziani Rumbino, Lili Maniambo, Melfi Soll, Gemala Dirgantari, O. Togibasa
{"title":"添加乙酸提高热带杏仁糊生物电池性能","authors":"Graziani Rumbino, Lili Maniambo, Melfi Soll, Gemala Dirgantari, O. Togibasa","doi":"10.13057/ijap.v12i2.61245","DOIUrl":null,"url":null,"abstract":"Biobattery is an alternative energy device that uses organic waste without hazardous chemicals. It is further reported that tropical almond (Terminalia catappa L.) is rich in glucose content, making it a potential electrolyte for a biobattery device, although the power performance is not optimal. Therefore, this research aims to improve the performance of biobattery from tropical almond paste with the addition of acetic acid. Biobattery cells were constructed using the galvanic cell method, while the tropical almond paste as an electrolyte was stored in a box container with a volume of 600 cm³, then attached with copper and zinc metal plate as cathode and anode. Five typical devices of biobattery were made with various acid concentrations of 0%, 10%, 20%, 40%, and 80% which were added to the electrolyte. The results showed a significant enhancement of power performance, from 0.25 mW without any acid up to 1.62 mW with acid addition. The biobattery from tropical almond paste added with acetic acid of 20% had the best performance. Based on the results, the characterization of this device had an open cell voltage of 0.93, and the power curve showed a peak value of 1.62 mW at a current of 3.29 mA, with a stable current lasting up to 200 hr.","PeriodicalId":31930,"journal":{"name":"Indonesian Journal of Applied Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Enhancement of Biobattery from Tropical Almond Paste Using Acetic Acid Addition\",\"authors\":\"Graziani Rumbino, Lili Maniambo, Melfi Soll, Gemala Dirgantari, O. Togibasa\",\"doi\":\"10.13057/ijap.v12i2.61245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biobattery is an alternative energy device that uses organic waste without hazardous chemicals. It is further reported that tropical almond (Terminalia catappa L.) is rich in glucose content, making it a potential electrolyte for a biobattery device, although the power performance is not optimal. Therefore, this research aims to improve the performance of biobattery from tropical almond paste with the addition of acetic acid. Biobattery cells were constructed using the galvanic cell method, while the tropical almond paste as an electrolyte was stored in a box container with a volume of 600 cm³, then attached with copper and zinc metal plate as cathode and anode. Five typical devices of biobattery were made with various acid concentrations of 0%, 10%, 20%, 40%, and 80% which were added to the electrolyte. The results showed a significant enhancement of power performance, from 0.25 mW without any acid up to 1.62 mW with acid addition. The biobattery from tropical almond paste added with acetic acid of 20% had the best performance. Based on the results, the characterization of this device had an open cell voltage of 0.93, and the power curve showed a peak value of 1.62 mW at a current of 3.29 mA, with a stable current lasting up to 200 hr.\",\"PeriodicalId\":31930,\"journal\":{\"name\":\"Indonesian Journal of Applied Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13057/ijap.v12i2.61245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13057/ijap.v12i2.61245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物电池是一种不使用有害化学物质的有机废物的替代能源装置。据进一步报道,热带杏仁(Terminalia catappa L.)含有丰富的葡萄糖含量,使其成为生物电池器件的潜在电解质,尽管功率性能不是最佳的。因此,本研究旨在通过添加乙酸来提高热带杏仁酱的生物电池性能。生物电池采用原电池法构建,将热带杏仁膏作为电解液储存在体积为600 cm³的盒式容器中,并附着铜和锌金属板作为阴极和阳极。在电解质中分别添加0%、10%、20%、40%和80%不同浓度的酸,制作了5种典型的生物电池器件。结果表明,功率性能显著提高,从没有添加酸的0.25 mW到添加酸的1.62 mW。以添加20%醋酸的热带杏仁膏为原料制备的生物电池性能最佳。结果表明,该器件的开槽电压为0.93,功率曲线在电流为3.29 mA时峰值为1.62 mW,稳定电流持续时间长达200 hr。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Enhancement of Biobattery from Tropical Almond Paste Using Acetic Acid Addition
Biobattery is an alternative energy device that uses organic waste without hazardous chemicals. It is further reported that tropical almond (Terminalia catappa L.) is rich in glucose content, making it a potential electrolyte for a biobattery device, although the power performance is not optimal. Therefore, this research aims to improve the performance of biobattery from tropical almond paste with the addition of acetic acid. Biobattery cells were constructed using the galvanic cell method, while the tropical almond paste as an electrolyte was stored in a box container with a volume of 600 cm³, then attached with copper and zinc metal plate as cathode and anode. Five typical devices of biobattery were made with various acid concentrations of 0%, 10%, 20%, 40%, and 80% which were added to the electrolyte. The results showed a significant enhancement of power performance, from 0.25 mW without any acid up to 1.62 mW with acid addition. The biobattery from tropical almond paste added with acetic acid of 20% had the best performance. Based on the results, the characterization of this device had an open cell voltage of 0.93, and the power curve showed a peak value of 1.62 mW at a current of 3.29 mA, with a stable current lasting up to 200 hr.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
28
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信