线性微分算子作用下的BESSEL多项式和一些连接公式

Q3 Mathematics
B. Aloui, Jihad Souissi
{"title":"线性微分算子作用下的BESSEL多项式和一些连接公式","authors":"B. Aloui, Jihad Souissi","doi":"10.15826/umj.2022.2.001","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of the \\(\\mathbb{B}_{\\alpha}\\)-classical orthogonal polynomials, where \\(\\mathbb{B}_{\\alpha}\\) is the raising operator \\(\\mathbb{B}_{\\alpha}:=x^2 \\cdot {d}/{dx}+\\big(2(\\alpha-1)x+1\\big)\\mathbb{I}\\), with nonzero complex number \\(\\alpha\\) and \\(\\mathbb{I}\\) representing the identity operator. We show that the Bessel polynomials \\(B^{(\\alpha)}_n(x),\\ n\\geq0\\), where \\(\\alpha\\neq-{m}/{2}, \\ m\\geq -2, \\ m\\in \\mathbb{Z}\\), are the only \\(\\mathbb{B}_{\\alpha}\\)-classical orthogonal polynomials. As an application, we present some new formulas for polynomial solution.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BESSEL POLYNOMIALS AND SOME CONNECTION FORMULAS IN TERMS OF THE ACTION OF LINEAR DIFFERENTIAL OPERATORS\",\"authors\":\"B. Aloui, Jihad Souissi\",\"doi\":\"10.15826/umj.2022.2.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the concept of the \\\\(\\\\mathbb{B}_{\\\\alpha}\\\\)-classical orthogonal polynomials, where \\\\(\\\\mathbb{B}_{\\\\alpha}\\\\) is the raising operator \\\\(\\\\mathbb{B}_{\\\\alpha}:=x^2 \\\\cdot {d}/{dx}+\\\\big(2(\\\\alpha-1)x+1\\\\big)\\\\mathbb{I}\\\\), with nonzero complex number \\\\(\\\\alpha\\\\) and \\\\(\\\\mathbb{I}\\\\) representing the identity operator. We show that the Bessel polynomials \\\\(B^{(\\\\alpha)}_n(x),\\\\ n\\\\geq0\\\\), where \\\\(\\\\alpha\\\\neq-{m}/{2}, \\\\ m\\\\geq -2, \\\\ m\\\\in \\\\mathbb{Z}\\\\), are the only \\\\(\\\\mathbb{B}_{\\\\alpha}\\\\)-classical orthogonal polynomials. As an application, we present some new formulas for polynomial solution.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2022.2.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.2.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们引入了\(\mathbb)的概念{B}_{\alpha}\)-经典正交多项式,其中\(\mathbb{B}_{\alpha}\)是引发运算符\(\mathbb{B}_{\alpha}:=x^2 \cdot{d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}\),非零复数\(\alpha)和\。我们证明了贝塞尔多项式\(B^{(\alpha)}_n(x),n\geq0\),其中\(\alpha\neq-{m}/{2},\m\geq-2,\m\ in\mathbb{Z}\)是唯一的\(\mathbb{B}_{\alpha}\)-经典正交多项式。作为一个应用,我们给出了多项式解的一些新公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BESSEL POLYNOMIALS AND SOME CONNECTION FORMULAS IN TERMS OF THE ACTION OF LINEAR DIFFERENTIAL OPERATORS
In this paper, we introduce the concept of the \(\mathbb{B}_{\alpha}\)-classical orthogonal polynomials, where \(\mathbb{B}_{\alpha}\) is the raising operator \(\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}\), with nonzero complex number \(\alpha\) and \(\mathbb{I}\) representing the identity operator. We show that the Bessel polynomials \(B^{(\alpha)}_n(x),\ n\geq0\), where \(\alpha\neq-{m}/{2}, \ m\geq -2, \ m\in \mathbb{Z}\), are the only \(\mathbb{B}_{\alpha}\)-classical orthogonal polynomials. As an application, we present some new formulas for polynomial solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信