改进的稀疏功能主成分分析在fMRI数据处理中的应用

Q3 Medicine
Zhengyang Fang, J. Y. Han, N. Simon, Xiaoping Zhou
{"title":"改进的稀疏功能主成分分析在fMRI数据处理中的应用","authors":"Zhengyang Fang, J. Y. Han, N. Simon, Xiaoping Zhou","doi":"10.1080/24709360.2019.1591072","DOIUrl":null,"url":null,"abstract":"Sparse and functional principal component analysis is a technique to extract sparse and smooth principal components from a matrix. In this paper, we propose a modified sparse and functional principal component analysis model for feature extraction. We measure the tuning parameters by their robustness against random perturbation, and select the tuning parameters by derivative-free optimization. We test our algorithm on the ADNI dataset to distinguish between the patients with Alzheimer's disease and the control group. By applying proper classification methods for sparse features, we get better result than classic singular value decomposition, support vector machine and logistic regression.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"3 1","pages":"80 - 89"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2019.1591072","citationCount":"1","resultStr":"{\"title\":\"Modified sparse functional principal component analysis for fMRI data process\",\"authors\":\"Zhengyang Fang, J. Y. Han, N. Simon, Xiaoping Zhou\",\"doi\":\"10.1080/24709360.2019.1591072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse and functional principal component analysis is a technique to extract sparse and smooth principal components from a matrix. In this paper, we propose a modified sparse and functional principal component analysis model for feature extraction. We measure the tuning parameters by their robustness against random perturbation, and select the tuning parameters by derivative-free optimization. We test our algorithm on the ADNI dataset to distinguish between the patients with Alzheimer's disease and the control group. By applying proper classification methods for sparse features, we get better result than classic singular value decomposition, support vector machine and logistic regression.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"3 1\",\"pages\":\"80 - 89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2019.1591072\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2019.1591072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2019.1591072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

稀疏泛函主成分分析是一种从矩阵中提取稀疏光滑主成分的技术。本文提出了一种改进的稀疏功能主成分分析模型用于特征提取。我们通过对随机扰动的鲁棒性来衡量调谐参数,并通过无导数优化来选择调谐参数。我们在ADNI数据集上测试了我们的算法,以区分阿尔茨海默病患者和对照组。通过对稀疏特征采用合适的分类方法,得到了比经典的奇异值分解、支持向量机和逻辑回归更好的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified sparse functional principal component analysis for fMRI data process
Sparse and functional principal component analysis is a technique to extract sparse and smooth principal components from a matrix. In this paper, we propose a modified sparse and functional principal component analysis model for feature extraction. We measure the tuning parameters by their robustness against random perturbation, and select the tuning parameters by derivative-free optimization. We test our algorithm on the ADNI dataset to distinguish between the patients with Alzheimer's disease and the control group. By applying proper classification methods for sparse features, we get better result than classic singular value decomposition, support vector machine and logistic regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信