A. Brisbourne, A. Smith, A. Rivera, R. Zamora, F. Napoleoni, J. Uribe, M. Ortega
{"title":"南极洲西部Lago冰下CECs的水深和海床条件","authors":"A. Brisbourne, A. Smith, A. Rivera, R. Zamora, F. Napoleoni, J. Uribe, M. Ortega","doi":"10.1017/jog.2023.38","DOIUrl":null,"url":null,"abstract":"\n Although over 600 Antarctic subglacial lakes have been identified using radar and satellite observations, the bathymetry and bed properties, which are key to understanding conditions within the lake, have been determined in very few localities. We present measurements of water column thickness and lakebed properties from Lago Subglacial CECs (SLC), located beneath 2653 m of ice at the Rutford-Institute-Minnesota divide in Antarctica. Seismic profiles indicate a maximum water column thickness of 301.3 ± 1.5 m, at the widest part of the lake, with an estimated lake volume of 2.5 ± 0.3 km3. Seismic imaging and measurements of the reflection strength at the ice base and lakebed indicate >15 m of high-porosity fine-grained sediment in the central section of the lakebed, consistent with a depositional sequence with an age of up to 0.5 Ma. These observations, along with previous radar measurements and modelling, indicate a low-energy sedimentary environment with a long water-residence time. As such, SLC is a suitable target for exploration via direct access to recover sediment records of ice sheet and climate history and investigate microbial life with long periods of isolation.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bathymetry and bed conditions of Lago Subglacial CECs, West Antarctica\",\"authors\":\"A. Brisbourne, A. Smith, A. Rivera, R. Zamora, F. Napoleoni, J. Uribe, M. Ortega\",\"doi\":\"10.1017/jog.2023.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Although over 600 Antarctic subglacial lakes have been identified using radar and satellite observations, the bathymetry and bed properties, which are key to understanding conditions within the lake, have been determined in very few localities. We present measurements of water column thickness and lakebed properties from Lago Subglacial CECs (SLC), located beneath 2653 m of ice at the Rutford-Institute-Minnesota divide in Antarctica. Seismic profiles indicate a maximum water column thickness of 301.3 ± 1.5 m, at the widest part of the lake, with an estimated lake volume of 2.5 ± 0.3 km3. Seismic imaging and measurements of the reflection strength at the ice base and lakebed indicate >15 m of high-porosity fine-grained sediment in the central section of the lakebed, consistent with a depositional sequence with an age of up to 0.5 Ma. These observations, along with previous radar measurements and modelling, indicate a low-energy sedimentary environment with a long water-residence time. As such, SLC is a suitable target for exploration via direct access to recover sediment records of ice sheet and climate history and investigate microbial life with long periods of isolation.\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2023.38\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.38","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Bathymetry and bed conditions of Lago Subglacial CECs, West Antarctica
Although over 600 Antarctic subglacial lakes have been identified using radar and satellite observations, the bathymetry and bed properties, which are key to understanding conditions within the lake, have been determined in very few localities. We present measurements of water column thickness and lakebed properties from Lago Subglacial CECs (SLC), located beneath 2653 m of ice at the Rutford-Institute-Minnesota divide in Antarctica. Seismic profiles indicate a maximum water column thickness of 301.3 ± 1.5 m, at the widest part of the lake, with an estimated lake volume of 2.5 ± 0.3 km3. Seismic imaging and measurements of the reflection strength at the ice base and lakebed indicate >15 m of high-porosity fine-grained sediment in the central section of the lakebed, consistent with a depositional sequence with an age of up to 0.5 Ma. These observations, along with previous radar measurements and modelling, indicate a low-energy sedimentary environment with a long water-residence time. As such, SLC is a suitable target for exploration via direct access to recover sediment records of ice sheet and climate history and investigate microbial life with long periods of isolation.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.