正态近似的累积量方法

IF 1.3 Q2 STATISTICS & PROBABILITY
Probability Surveys Pub Date : 2021-02-02 DOI:10.1214/22-ps7
Hanna Doring, S. Jansen, K. Schubert
{"title":"正态近似的累积量方法","authors":"Hanna Doring, S. Jansen, K. Schubert","doi":"10.1214/22-ps7","DOIUrl":null,"url":null,"abstract":"The survey is dedicated to a celebrated series of quantitave results, developed by the Lithuanian school of probability, on the normal approximation for a real-valued random variable. The key ingredient is a bound on cumulants of the type |κj(X)| ≤ j!1+γ/∆j−2, which is weaker than Cramér’s condition of finite exponential moments. We give a self-contained proof of some of the “main lemmas” in a book by Saulis and Statulevičius (1989), and an accessible introduction to the Cramér-Petrov series. In addition, we explain relations with heavy-tailed Weibull variables, moderate deviations, and mod-phi convergence. We discuss some methods for bounding cumulants such as summability of mixed cumulants and dependency graphs, and briefly review a few recent applications of the method of cumulants for the normal approximation. Mathematics Subject Classification 2020: 60F05; 60F10; 60G70; 60K35.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The method of cumulants for the normal approximation\",\"authors\":\"Hanna Doring, S. Jansen, K. Schubert\",\"doi\":\"10.1214/22-ps7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The survey is dedicated to a celebrated series of quantitave results, developed by the Lithuanian school of probability, on the normal approximation for a real-valued random variable. The key ingredient is a bound on cumulants of the type |κj(X)| ≤ j!1+γ/∆j−2, which is weaker than Cramér’s condition of finite exponential moments. We give a self-contained proof of some of the “main lemmas” in a book by Saulis and Statulevičius (1989), and an accessible introduction to the Cramér-Petrov series. In addition, we explain relations with heavy-tailed Weibull variables, moderate deviations, and mod-phi convergence. We discuss some methods for bounding cumulants such as summability of mixed cumulants and dependency graphs, and briefly review a few recent applications of the method of cumulants for the normal approximation. Mathematics Subject Classification 2020: 60F05; 60F10; 60G70; 60K35.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ps7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-ps7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

摘要

这项调查致力于立陶宛概率学派对实值随机变量的正态近似得出的一系列著名的定量结果。关键成分是类型为|κj(X)|≤j的累积量上的一个界!1+γ/∆j−2,弱于有限指数矩的Cramér条件。我们在Saulis和Statulevičius(1989)的一本书中给出了一些“主要引理”的自成一体的证明,并对Cramér-Petrov系列进行了通俗易懂的介绍。此外,我们还解释了重尾威布尔变量、中等偏差和mod phi收敛的关系。我们讨论了一些边界累积量的方法,如混合累积量的可和性和依赖图,并简要回顾了累积量方法在正态近似中的一些最新应用。2020年数学学科分类:60F05;60F10;60G70;60K35。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The method of cumulants for the normal approximation
The survey is dedicated to a celebrated series of quantitave results, developed by the Lithuanian school of probability, on the normal approximation for a real-valued random variable. The key ingredient is a bound on cumulants of the type |κj(X)| ≤ j!1+γ/∆j−2, which is weaker than Cramér’s condition of finite exponential moments. We give a self-contained proof of some of the “main lemmas” in a book by Saulis and Statulevičius (1989), and an accessible introduction to the Cramér-Petrov series. In addition, we explain relations with heavy-tailed Weibull variables, moderate deviations, and mod-phi convergence. We discuss some methods for bounding cumulants such as summability of mixed cumulants and dependency graphs, and briefly review a few recent applications of the method of cumulants for the normal approximation. Mathematics Subject Classification 2020: 60F05; 60F10; 60G70; 60K35.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信