Engel流形中的非同位素横向tori

IF 1.3 2区 数学 Q1 MATHEMATICS
M. Kegel
{"title":"Engel流形中的非同位素横向tori","authors":"M. Kegel","doi":"10.4171/rmi/1413","DOIUrl":null,"url":null,"abstract":". In every Engel manifold we construct an infinite family of pairwise non-isotopic transverse tori that are all smoothly isotopic. To distinguish the transverse tori in the family we introduce a homological invariant of transverse tori that is similar to the self-linking number for transverse knots in contact 3-manifolds. Analogous results are presented for Legendrian tori in even contact 4-manifolds.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-isotopic transverse tori in Engel manifolds\",\"authors\":\"M. Kegel\",\"doi\":\"10.4171/rmi/1413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In every Engel manifold we construct an infinite family of pairwise non-isotopic transverse tori that are all smoothly isotopic. To distinguish the transverse tori in the family we introduce a homological invariant of transverse tori that is similar to the self-linking number for transverse knots in contact 3-manifolds. Analogous results are presented for Legendrian tori in even contact 4-manifolds.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1413\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1413","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在每个恩格尔流形中,我们构造了一个有限的成对非同位素横向复曲面族,这些复曲面都是光滑的同位素。为了区分族中的横向复曲面,我们引入了横向复曲面的同调不变量,该不变量类似于接触3-流形中横向节点的自连接数。给出了Legendarian tori在偶接触4-流形中的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-isotopic transverse tori in Engel manifolds
. In every Engel manifold we construct an infinite family of pairwise non-isotopic transverse tori that are all smoothly isotopic. To distinguish the transverse tori in the family we introduce a homological invariant of transverse tori that is similar to the self-linking number for transverse knots in contact 3-manifolds. Analogous results are presented for Legendrian tori in even contact 4-manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信