{"title":"具有分数阶耗散的随机雷-α系统的偏差原理","authors":"Yueyang Wang, Guanggan Chen, Min Yang","doi":"10.1142/s0219493722400275","DOIUrl":null,"url":null,"abstract":"This work is concerned with a stochastic Leray-[Formula: see text] system with fractional dissipation driven by multiplicative noise. It establishes the central limit theorem of the stochastic system. Moreover, building a new auxiliary system and using the classical weak convergence approach, it derives the moderate deviation principle of the stochastic system.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deviation principles of a stochastic leray-α system with fractional dissipation\",\"authors\":\"Yueyang Wang, Guanggan Chen, Min Yang\",\"doi\":\"10.1142/s0219493722400275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is concerned with a stochastic Leray-[Formula: see text] system with fractional dissipation driven by multiplicative noise. It establishes the central limit theorem of the stochastic system. Moreover, building a new auxiliary system and using the classical weak convergence approach, it derives the moderate deviation principle of the stochastic system.\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493722400275\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493722400275","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Deviation principles of a stochastic leray-α system with fractional dissipation
This work is concerned with a stochastic Leray-[Formula: see text] system with fractional dissipation driven by multiplicative noise. It establishes the central limit theorem of the stochastic system. Moreover, building a new auxiliary system and using the classical weak convergence approach, it derives the moderate deviation principle of the stochastic system.
期刊介绍:
This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view.
Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.