函数,单态和Frobenius常数

IF 1.2 3区 数学 Q1 MATHEMATICS
S. Bloch, Masha Vlasenko
{"title":"函数,单态和Frobenius常数","authors":"S. Bloch, Masha Vlasenko","doi":"10.4310/CNTP.2021.v15.n1.a3","DOIUrl":null,"url":null,"abstract":"In their paper on the gamma conjecture in mirror symmetry, Golyshev and Zagier introduce what we refer to as Frobenius constants associated to an ordinary linear differential operator L with a reflection type singularity. These numbers describe the variation around the reflection point of Frobenius solutions to L defined near other singular points. Golyshev and Zagier show that in certain geometric cases Frobenius constants are periods, and they raise the question quite generally how to describe these numbers motivically. In this paper we give a relation between Frobenius constants and Taylor coefficients of generalized gamma functions, from which it follows that Frobenius constants of Picard--Fuchs differential operators are periods. We also study the relation between these constants and periods of limiting Hodge structures. \nThis is a major revision of the previous version of the manuscript. The notion of Frobenius constants and our main result are extended to the general case of regular singularities with any sets of local exponents. In addition, the generating function of Frobenius constants is given explicitly for all hypergeometric connections.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gamma functions, monodromy and Frobenius constants\",\"authors\":\"S. Bloch, Masha Vlasenko\",\"doi\":\"10.4310/CNTP.2021.v15.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In their paper on the gamma conjecture in mirror symmetry, Golyshev and Zagier introduce what we refer to as Frobenius constants associated to an ordinary linear differential operator L with a reflection type singularity. These numbers describe the variation around the reflection point of Frobenius solutions to L defined near other singular points. Golyshev and Zagier show that in certain geometric cases Frobenius constants are periods, and they raise the question quite generally how to describe these numbers motivically. In this paper we give a relation between Frobenius constants and Taylor coefficients of generalized gamma functions, from which it follows that Frobenius constants of Picard--Fuchs differential operators are periods. We also study the relation between these constants and periods of limiting Hodge structures. \\nThis is a major revision of the previous version of the manuscript. The notion of Frobenius constants and our main result are extended to the general case of regular singularities with any sets of local exponents. In addition, the generating function of Frobenius constants is given explicitly for all hypergeometric connections.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2021.v15.n1.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2021.v15.n1.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

在他们关于镜像对称中的伽马猜想的论文中,Golyshev和Zagier引入了我们所说的与具有反射型奇点的普通线性微分算子L相关的Frobenius常数。这些数字描述了在其他奇异点附近定义的L的Frobenius解在反射点周围的变化。Golyshev和Zagier表明,在某些几何情况下,Frobenius常数是周期,他们提出了一个很普遍的问题,如何从动机上描述这些数字。本文给出了广义函数的Frobenius常数与Taylor系数之间的关系,由此得出Picard—Fuchs微分算子的Frobenius常数是周期。我们还研究了这些常数与极限Hodge结构周期的关系。这是对前一版本手稿的重大修改。将Frobenius常数的概念和我们的主要结果推广到具有任何局部指数集的正则奇点的一般情况。此外,还给出了所有超几何连接的Frobenius常数的生成函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gamma functions, monodromy and Frobenius constants
In their paper on the gamma conjecture in mirror symmetry, Golyshev and Zagier introduce what we refer to as Frobenius constants associated to an ordinary linear differential operator L with a reflection type singularity. These numbers describe the variation around the reflection point of Frobenius solutions to L defined near other singular points. Golyshev and Zagier show that in certain geometric cases Frobenius constants are periods, and they raise the question quite generally how to describe these numbers motivically. In this paper we give a relation between Frobenius constants and Taylor coefficients of generalized gamma functions, from which it follows that Frobenius constants of Picard--Fuchs differential operators are periods. We also study the relation between these constants and periods of limiting Hodge structures. This is a major revision of the previous version of the manuscript. The notion of Frobenius constants and our main result are extended to the general case of regular singularities with any sets of local exponents. In addition, the generating function of Frobenius constants is given explicitly for all hypergeometric connections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信