二阶线性微分方程解的零点与增长

Pub Date : 2018-09-12 DOI:10.4134/CKMS.C180494
Manisha Saini, Sanjay Kumar
{"title":"二阶线性微分方程解的零点与增长","authors":"Manisha Saini, Sanjay Kumar","doi":"10.4134/CKMS.C180494","DOIUrl":null,"url":null,"abstract":"For a second order linear differential equation $f''+A(z)f'+B(z)f=0$, with $ A(z)$ and $B(z)$ being transcendental entire functions under some restriction, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions have infinite number of zeros. Also, we have extended these results to higher order linear differential equations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS\",\"authors\":\"Manisha Saini, Sanjay Kumar\",\"doi\":\"10.4134/CKMS.C180494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a second order linear differential equation $f''+A(z)f'+B(z)f=0$, with $ A(z)$ and $B(z)$ being transcendental entire functions under some restriction, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions have infinite number of zeros. Also, we have extended these results to higher order linear differential equations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.C180494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C180494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

对于二阶线性微分方程$f' + a (z)f'+B(z)f=0$,当$ a (z)$和$B(z)$是在一定限制下的超越整函数时,我们证明了所有非平凡解都是无限阶的。此外,我们还证明了这些解有无限个零。同时,我们将这些结果推广到高阶线性微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS
For a second order linear differential equation $f''+A(z)f'+B(z)f=0$, with $ A(z)$ and $B(z)$ being transcendental entire functions under some restriction, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions have infinite number of zeros. Also, we have extended these results to higher order linear differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信