{"title":"相转移催化α-溴-α, β-不饱和酮在水中的高效胺化反应","authors":"Alemayehu Mekonnen, A. Tesfaye","doi":"10.1155/2021/6616458","DOIUrl":null,"url":null,"abstract":"Tandem conjugate addition–alkylation reaction of various amines with α-bromo-α, β-unsaturated ketones resulted in near-quantitative conversions into the corresponding aziridines when the reaction was carried out in the presence of 10 mol% of phase-transfer, PT catalysts in water. Some chiral quaternary ammonium salts derived from Cinchona alkaloids were investigated as water-stable PT catalysts. The scope and limitations of the reaction have also been investigated. The catalytic performances were significantly improved in comparison with the corresponding ordinary quaternary ammonium salt catalysts, and excellent yields (81%–96%) were obtained. Although an increase in the rate of aziridination has been accomplished, no stereoselectivity was observed. The positive values of the protocol have been confirmed.","PeriodicalId":12816,"journal":{"name":"Heteroatom Chemistry","volume":"2021 1","pages":"1-10"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Remarkably Efficient Phase-Transfer Catalyzed Amination of α-Bromo-α, β-Unsaturated Ketones in Water\",\"authors\":\"Alemayehu Mekonnen, A. Tesfaye\",\"doi\":\"10.1155/2021/6616458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tandem conjugate addition–alkylation reaction of various amines with α-bromo-α, β-unsaturated ketones resulted in near-quantitative conversions into the corresponding aziridines when the reaction was carried out in the presence of 10 mol% of phase-transfer, PT catalysts in water. Some chiral quaternary ammonium salts derived from Cinchona alkaloids were investigated as water-stable PT catalysts. The scope and limitations of the reaction have also been investigated. The catalytic performances were significantly improved in comparison with the corresponding ordinary quaternary ammonium salt catalysts, and excellent yields (81%–96%) were obtained. Although an increase in the rate of aziridination has been accomplished, no stereoselectivity was observed. The positive values of the protocol have been confirmed.\",\"PeriodicalId\":12816,\"journal\":{\"name\":\"Heteroatom Chemistry\",\"volume\":\"2021 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heteroatom Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6616458\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heteroatom Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2021/6616458","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Remarkably Efficient Phase-Transfer Catalyzed Amination of α-Bromo-α, β-Unsaturated Ketones in Water
Tandem conjugate addition–alkylation reaction of various amines with α-bromo-α, β-unsaturated ketones resulted in near-quantitative conversions into the corresponding aziridines when the reaction was carried out in the presence of 10 mol% of phase-transfer, PT catalysts in water. Some chiral quaternary ammonium salts derived from Cinchona alkaloids were investigated as water-stable PT catalysts. The scope and limitations of the reaction have also been investigated. The catalytic performances were significantly improved in comparison with the corresponding ordinary quaternary ammonium salt catalysts, and excellent yields (81%–96%) were obtained. Although an increase in the rate of aziridination has been accomplished, no stereoselectivity was observed. The positive values of the protocol have been confirmed.
期刊介绍:
Heteroatom Chemistry brings together a broad, interdisciplinary group of chemists who work with compounds containing main-group elements of groups 13 through 17 of the Periodic Table, and certain other related elements. The fundamental reactivity under investigation should, in all cases, be concentrated about the heteroatoms. It does not matter whether the compounds being studied are acyclic or cyclic; saturated or unsaturated; monomeric, polymeric or solid state in nature; inorganic, organic, or naturally occurring, so long as the heteroatom is playing an essential role. Computational, experimental, and combined studies are equally welcome.
Subject areas include (but are by no means limited to):
-Reactivity about heteroatoms for accessing new products or synthetic pathways
-Unusual valency main-group element compounds and their properties
-Highly strained (e.g. bridged) main-group element compounds and their properties
-Photochemical or thermal cleavage of heteroatom bonds and the resulting reactivity
-Uncommon and structurally interesting heteroatom-containing species (including those containing multiple bonds and catenation)
-Stereochemistry of compounds due to the presence of heteroatoms
-Neighboring group effects of heteroatoms on the properties of compounds
-Main-group element compounds as analogues of transition metal compounds
-Variations and new results from established and named reactions (including Wittig, Kabachnik–Fields, Pudovik, Arbuzov, Hirao, and Mitsunobu)
-Catalysis and green syntheses enabled by heteroatoms and their chemistry
-Applications of compounds where the heteroatom plays a critical role.
In addition to original research articles on heteroatom chemistry, the journal welcomes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.