S. El-ghzizel, H. Jalté, Hajar Zeggar, M. Zait, S. Belhamidi, F. Tiyal, M. Hafsi, M. Taky, A. Elmidaoui
{"title":"去中心化脱矿厂纳滤膜解剖","authors":"S. El-ghzizel, H. Jalté, Hajar Zeggar, M. Zait, S. Belhamidi, F. Tiyal, M. Hafsi, M. Taky, A. Elmidaoui","doi":"10.12989/MWT.2019.10.4.277","DOIUrl":null,"url":null,"abstract":"In 2014, the first demineralization plant, using nanofiltration (NF) membrane coupled with renewable energies was realized at Al Annouar high school of Sidi Taibi, Kenitra, Morocco. This project has revealed difficulties related to the membrane performances loss (pressure increase, flux decline, poor water quality of the produced water and increase of energy consumption), as consequences of membrane fouling. To solve this problem, an autopsy of the membrane was done in order to determine the nature and origin of the fouling. The samples of membrane and fouling were then analyzed by scanning electron microscopy using a scanning electron microscope (SEM) connected with an energy dispersive X-ray (EDX) detection system and X-ray diffractometer (XRD). Moreover, three cleaning solutions (hydrochloric acid, nitric acid and sulfuric acid) were tested and assessed in a single cleaning step to find the suitable one for the fouled membrane to regain its initial permeability and performances. The analysis of the experimental results showed that the fouling layer is mainly composed of calcium carbonate (inorganic fouling). Results showed also that the permeability is improved by the hydrochloric acid cleaning (pH=3) with a cleaning efficiency of 93%. Cleaning efficiency did not exceed 75 % with nitric acid (pH=3) and 40 % with sulfuric acid (pH= 3).","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":"10 1","pages":"277-286"},"PeriodicalIF":0.8000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Autopsy of Nanofiltration membrane of a decentralized demineralization plant\",\"authors\":\"S. El-ghzizel, H. Jalté, Hajar Zeggar, M. Zait, S. Belhamidi, F. Tiyal, M. Hafsi, M. Taky, A. Elmidaoui\",\"doi\":\"10.12989/MWT.2019.10.4.277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2014, the first demineralization plant, using nanofiltration (NF) membrane coupled with renewable energies was realized at Al Annouar high school of Sidi Taibi, Kenitra, Morocco. This project has revealed difficulties related to the membrane performances loss (pressure increase, flux decline, poor water quality of the produced water and increase of energy consumption), as consequences of membrane fouling. To solve this problem, an autopsy of the membrane was done in order to determine the nature and origin of the fouling. The samples of membrane and fouling were then analyzed by scanning electron microscopy using a scanning electron microscope (SEM) connected with an energy dispersive X-ray (EDX) detection system and X-ray diffractometer (XRD). Moreover, three cleaning solutions (hydrochloric acid, nitric acid and sulfuric acid) were tested and assessed in a single cleaning step to find the suitable one for the fouled membrane to regain its initial permeability and performances. The analysis of the experimental results showed that the fouling layer is mainly composed of calcium carbonate (inorganic fouling). Results showed also that the permeability is improved by the hydrochloric acid cleaning (pH=3) with a cleaning efficiency of 93%. Cleaning efficiency did not exceed 75 % with nitric acid (pH=3) and 40 % with sulfuric acid (pH= 3).\",\"PeriodicalId\":18416,\"journal\":{\"name\":\"Membrane Water Treatment\",\"volume\":\"10 1\",\"pages\":\"277-286\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membrane Water Treatment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/MWT.2019.10.4.277\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2019.10.4.277","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Autopsy of Nanofiltration membrane of a decentralized demineralization plant
In 2014, the first demineralization plant, using nanofiltration (NF) membrane coupled with renewable energies was realized at Al Annouar high school of Sidi Taibi, Kenitra, Morocco. This project has revealed difficulties related to the membrane performances loss (pressure increase, flux decline, poor water quality of the produced water and increase of energy consumption), as consequences of membrane fouling. To solve this problem, an autopsy of the membrane was done in order to determine the nature and origin of the fouling. The samples of membrane and fouling were then analyzed by scanning electron microscopy using a scanning electron microscope (SEM) connected with an energy dispersive X-ray (EDX) detection system and X-ray diffractometer (XRD). Moreover, three cleaning solutions (hydrochloric acid, nitric acid and sulfuric acid) were tested and assessed in a single cleaning step to find the suitable one for the fouled membrane to regain its initial permeability and performances. The analysis of the experimental results showed that the fouling layer is mainly composed of calcium carbonate (inorganic fouling). Results showed also that the permeability is improved by the hydrochloric acid cleaning (pH=3) with a cleaning efficiency of 93%. Cleaning efficiency did not exceed 75 % with nitric acid (pH=3) and 40 % with sulfuric acid (pH= 3).
期刊介绍:
The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.