具有广义储能和条件风险值模型的CSP-IES经济调度策略

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS
W. Chen, Haonan Lu, Zhanhong Wei
{"title":"具有广义储能和条件风险值模型的CSP-IES经济调度策略","authors":"W. Chen, Haonan Lu, Zhanhong Wei","doi":"10.1063/5.0161850","DOIUrl":null,"url":null,"abstract":"To promote the efficient use of energy storage and renewable energy consumption in the integrated energy system (IES), an economic dispatch strategy for the concentrating solar power (CSP)-IES with generalized energy storage and a conditional value-at-risk (CVaR) model is proposed. First, considering the characteristics of energy storage and distributed power supply timing, a CSP-IES configuration is established by using a CSP plant to achieve thermal decoupling of the combined heat and power unit and by defining the thermal storage system of the CSP plant and the battery as the actual energy storage. Second, the fuzzy response of the logistic function is used to optimize the time-of-use tariff to guide load shifting, and the load shifting is defined as virtual energy storage. Third, the CSP-IES economic dispatch model is established to consider the carbon emission allowance model. Finally, considering the system uncertainty, a fuzzy chance constraint is used to relax the system power balance constraint, and then the trapezoidal fuzzy number is transformed into a deterministic equivalence class, and the CVaR model is used as a risk assessment index to quantify the risk cost of the system due to uncertainty. The CSP-IES economic dispatch model with CVaR is constructed. The feasibility and effectiveness of the proposed optimization model are verified by comparing various scenarios.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSP-IES economic dispatch strategy with generalized energy storage and a conditional value-at-risk model\",\"authors\":\"W. Chen, Haonan Lu, Zhanhong Wei\",\"doi\":\"10.1063/5.0161850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To promote the efficient use of energy storage and renewable energy consumption in the integrated energy system (IES), an economic dispatch strategy for the concentrating solar power (CSP)-IES with generalized energy storage and a conditional value-at-risk (CVaR) model is proposed. First, considering the characteristics of energy storage and distributed power supply timing, a CSP-IES configuration is established by using a CSP plant to achieve thermal decoupling of the combined heat and power unit and by defining the thermal storage system of the CSP plant and the battery as the actual energy storage. Second, the fuzzy response of the logistic function is used to optimize the time-of-use tariff to guide load shifting, and the load shifting is defined as virtual energy storage. Third, the CSP-IES economic dispatch model is established to consider the carbon emission allowance model. Finally, considering the system uncertainty, a fuzzy chance constraint is used to relax the system power balance constraint, and then the trapezoidal fuzzy number is transformed into a deterministic equivalence class, and the CVaR model is used as a risk assessment index to quantify the risk cost of the system due to uncertainty. The CSP-IES economic dispatch model with CVaR is constructed. The feasibility and effectiveness of the proposed optimization model are verified by comparing various scenarios.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0161850\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0161850","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了促进综合能源系统(IES)中储能和可再生能源消耗的有效利用,提出了一种具有广义储能和条件风险值(CVaR)模型的聚光太阳能(CSP)-IES的经济调度策略。首先,考虑到储能和分布式供电时序的特点,通过使用CSP工厂实现热电联产机组的热去耦,并将CSP工厂和电池的储热系统定义为实际储能,建立了CSP-IES配置。其次,利用逻辑函数的模糊响应来优化电价使用时间,以指导负荷转移,并将负荷转移定义为虚拟储能。第三,建立了考虑碳排放限额模型的CSP-IES经济调度模型。最后,考虑到系统的不确定性,使用模糊机会约束来放松系统功率平衡约束,然后将梯形模糊数转化为确定性等价类,并将CVaR模型作为风险评估指标来量化系统由于不确定性而产生的风险成本。建立了具有CVaR的CSP-IES经济调度模型。通过对各种场景的比较,验证了所提出的优化模型的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CSP-IES economic dispatch strategy with generalized energy storage and a conditional value-at-risk model
To promote the efficient use of energy storage and renewable energy consumption in the integrated energy system (IES), an economic dispatch strategy for the concentrating solar power (CSP)-IES with generalized energy storage and a conditional value-at-risk (CVaR) model is proposed. First, considering the characteristics of energy storage and distributed power supply timing, a CSP-IES configuration is established by using a CSP plant to achieve thermal decoupling of the combined heat and power unit and by defining the thermal storage system of the CSP plant and the battery as the actual energy storage. Second, the fuzzy response of the logistic function is used to optimize the time-of-use tariff to guide load shifting, and the load shifting is defined as virtual energy storage. Third, the CSP-IES economic dispatch model is established to consider the carbon emission allowance model. Finally, considering the system uncertainty, a fuzzy chance constraint is used to relax the system power balance constraint, and then the trapezoidal fuzzy number is transformed into a deterministic equivalence class, and the CVaR model is used as a risk assessment index to quantify the risk cost of the system due to uncertainty. The CSP-IES economic dispatch model with CVaR is constructed. The feasibility and effectiveness of the proposed optimization model are verified by comparing various scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信