Fe3O4磁性纳米粒子对水溶液中重金属的一元和三元去除

IF 1 Q4 ENGINEERING, CIVIL
K. Al-Zboon
{"title":"Fe3O4磁性纳米粒子对水溶液中重金属的一元和三元去除","authors":"K. Al-Zboon","doi":"10.14525/jjce.v17i2.13","DOIUrl":null,"url":null,"abstract":"This research aims to investigate the use of magnetic iron nano-particles (FeN) for the removal of heavy metals under single and ternary scenarios. The methodology includes synthesis of FeN using chemical precipitation approach, batch experiments for single and ternary metals removal, isotherm and kinetic studies, thermos-dynamic study and assessing the effect of different parameters on the adsorption process. The results showed that the maximum removal for As and Hg was achieved at a pH of 7, while a pH of 6 provided a slightly higher removal of Cd than a pH of 7 at an optimum mixing time of 120 minutes. The optimum adsorption capacities of As, Cd and Hg at the initial concentration of 200 ppm were 260, 280 and 75.0 mg/g in the case of single metal removal against 91.5, 237.8 and 341.5 mg/g in the case of ternary combination, respectively. The removal of all metals increased with increasing the FeN dose and the mixing time, while it decreased with the increase of the initial concentration. The removal efficiency was affected strongly by the presence of multiple metals, while As removal decreased sharply and Hg removal increased significantly. Adsorption selectivity is affected negatively by the increase in atomic weight and atomic radius. In the case of single-metal removal, fitting of isotherm models can be ranked as Langmuir>Freundlich>Temkin>D-R for As and Cd and Temkin>Freundlich>D-R>Langmuir for Hg, while contradictory results were obtained in the case of ternary combination. Kinetic studies found that the adsorption follows the pseudo-second-order model with R2=0.99. For all metals, the adsorption process is highly favourable at higher temperatures and is endothermic in nature with (ΔHo) of 10.91, 23.86 and 0.163 for As, Cd and Hg, respectively. Coating of FeN with silica resulted in lower removal efficiency for all metals up to 50%. It can be concluded that FeN can be successfully used for the removal of heavy metals either through the single or ternary approach, but the single approach provides a higher performance. KEYWORDS: Nano-materials, Magnetite iron, Adsorption, Arsenic, Cadmium, Mercury, Lead.","PeriodicalId":51814,"journal":{"name":"Jordan Journal of Civil Engineering","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single and Ternary Removal of Heavy Metals from Aqueous Solution Using Fe3O4 Magnetic Nano-particles\",\"authors\":\"K. Al-Zboon\",\"doi\":\"10.14525/jjce.v17i2.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to investigate the use of magnetic iron nano-particles (FeN) for the removal of heavy metals under single and ternary scenarios. The methodology includes synthesis of FeN using chemical precipitation approach, batch experiments for single and ternary metals removal, isotherm and kinetic studies, thermos-dynamic study and assessing the effect of different parameters on the adsorption process. The results showed that the maximum removal for As and Hg was achieved at a pH of 7, while a pH of 6 provided a slightly higher removal of Cd than a pH of 7 at an optimum mixing time of 120 minutes. The optimum adsorption capacities of As, Cd and Hg at the initial concentration of 200 ppm were 260, 280 and 75.0 mg/g in the case of single metal removal against 91.5, 237.8 and 341.5 mg/g in the case of ternary combination, respectively. The removal of all metals increased with increasing the FeN dose and the mixing time, while it decreased with the increase of the initial concentration. The removal efficiency was affected strongly by the presence of multiple metals, while As removal decreased sharply and Hg removal increased significantly. Adsorption selectivity is affected negatively by the increase in atomic weight and atomic radius. In the case of single-metal removal, fitting of isotherm models can be ranked as Langmuir>Freundlich>Temkin>D-R for As and Cd and Temkin>Freundlich>D-R>Langmuir for Hg, while contradictory results were obtained in the case of ternary combination. Kinetic studies found that the adsorption follows the pseudo-second-order model with R2=0.99. For all metals, the adsorption process is highly favourable at higher temperatures and is endothermic in nature with (ΔHo) of 10.91, 23.86 and 0.163 for As, Cd and Hg, respectively. Coating of FeN with silica resulted in lower removal efficiency for all metals up to 50%. It can be concluded that FeN can be successfully used for the removal of heavy metals either through the single or ternary approach, but the single approach provides a higher performance. KEYWORDS: Nano-materials, Magnetite iron, Adsorption, Arsenic, Cadmium, Mercury, Lead.\",\"PeriodicalId\":51814,\"journal\":{\"name\":\"Jordan Journal of Civil Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14525/jjce.v17i2.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14525/jjce.v17i2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在研究磁性铁纳米粒子(FeN)在单一和三元情况下用于去除重金属。该方法包括使用化学沉淀法合成FeN、单金属和三元金属去除的分批实验、等温线和动力学研究、热动力学研究以及评估不同参数对吸附过程的影响。结果表明,在pH为7时对As和Hg的去除率最高,而在最佳混合时间为120分钟时,pH为6时对Cd的去除率略高于pH为7。在初始浓度为200ppm时,单一金属对As、Cd和Hg的最佳吸附量分别为260、280和75.0 mg/g,而三元组合对As、Cd和Hg的最优吸附量分别是91.5、237.8和341.5 mg/g。所有金属的去除率随着FeN剂量和混合时间的增加而增加,而随着初始浓度的增加而降低。多种金属的存在对去除效率有很大影响,而As的去除率急剧下降,Hg的去除率显著提高。吸附选择性受到原子量和原子半径增加的负面影响。在单一金属去除的情况下,对于as和Cd,等温线模型的拟合可以排序为Langmuir>Freundlich>Temkin>D-R,对于Hg,等温线模型可以排序为Temkin>Freundlich>D-R>Langmuir,而在三元组合的情况下得到了矛盾的结果。动力学研究发现,吸附遵循伪二阶模型,R2=0.99。对于所有金属,吸附过程在更高的温度下是非常有利的,并且本质上是吸热的,As、Cd和Hg的(ΔHo)分别为10.91、23.86和0.163。用二氧化硅涂覆FeN导致所有金属的去除效率降低,最高可达50%。可以得出结论,FeN可以通过单一或三元方法成功地用于去除重金属,但单一方法提供了更高的性能。关键词:纳米材料,磁铁,吸附,砷,镉,汞,铅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single and Ternary Removal of Heavy Metals from Aqueous Solution Using Fe3O4 Magnetic Nano-particles
This research aims to investigate the use of magnetic iron nano-particles (FeN) for the removal of heavy metals under single and ternary scenarios. The methodology includes synthesis of FeN using chemical precipitation approach, batch experiments for single and ternary metals removal, isotherm and kinetic studies, thermos-dynamic study and assessing the effect of different parameters on the adsorption process. The results showed that the maximum removal for As and Hg was achieved at a pH of 7, while a pH of 6 provided a slightly higher removal of Cd than a pH of 7 at an optimum mixing time of 120 minutes. The optimum adsorption capacities of As, Cd and Hg at the initial concentration of 200 ppm were 260, 280 and 75.0 mg/g in the case of single metal removal against 91.5, 237.8 and 341.5 mg/g in the case of ternary combination, respectively. The removal of all metals increased with increasing the FeN dose and the mixing time, while it decreased with the increase of the initial concentration. The removal efficiency was affected strongly by the presence of multiple metals, while As removal decreased sharply and Hg removal increased significantly. Adsorption selectivity is affected negatively by the increase in atomic weight and atomic radius. In the case of single-metal removal, fitting of isotherm models can be ranked as Langmuir>Freundlich>Temkin>D-R for As and Cd and Temkin>Freundlich>D-R>Langmuir for Hg, while contradictory results were obtained in the case of ternary combination. Kinetic studies found that the adsorption follows the pseudo-second-order model with R2=0.99. For all metals, the adsorption process is highly favourable at higher temperatures and is endothermic in nature with (ΔHo) of 10.91, 23.86 and 0.163 for As, Cd and Hg, respectively. Coating of FeN with silica resulted in lower removal efficiency for all metals up to 50%. It can be concluded that FeN can be successfully used for the removal of heavy metals either through the single or ternary approach, but the single approach provides a higher performance. KEYWORDS: Nano-materials, Magnetite iron, Adsorption, Arsenic, Cadmium, Mercury, Lead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
27.30%
发文量
0
期刊介绍: I am very pleased and honored to be appointed as an Editor-in-Chief of the Jordan Journal of Civil Engineering which enjoys an excellent reputation, both locally and internationally. Since development is the essence of life, I hope to continue developing this distinguished Journal, building on the effort of all the Editors-in-Chief and Editorial Board Members as well as Advisory Boards of the Journal since its establishment about a decade ago. I will do my best to focus on publishing high quality diverse articles and move forward in the indexing issue of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信