{"title":"分数阶Volterra—Fredholm积分微分方程解的一些新的唯一性结果","authors":"A. Hamoud, K. Ghadle","doi":"10.52547/ijmsi.17.1.135","DOIUrl":null,"url":null,"abstract":". This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction principle and Bihari’s inequality. A wider applicabil-ity of these techniques are based on their reliability and reduction in the size of the mathematical work.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Some New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations\",\"authors\":\"A. Hamoud, K. Ghadle\",\"doi\":\"10.52547/ijmsi.17.1.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction principle and Bihari’s inequality. A wider applicabil-ity of these techniques are based on their reliability and reduction in the size of the mathematical work.\",\"PeriodicalId\":43670,\"journal\":{\"name\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/ijmsi.17.1.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ijmsi.17.1.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations
. This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction principle and Bihari’s inequality. A wider applicabil-ity of these techniques are based on their reliability and reduction in the size of the mathematical work.