过分割秩的严格对数子可加性

Pub Date : 2023-03-24 DOI:10.1007/s00026-023-00643-5
Helen W. J. Zhang, Ying Zhong
{"title":"过分割秩的严格对数子可加性","authors":"Helen W. J. Zhang,&nbsp;Ying Zhong","doi":"10.1007/s00026-023-00643-5","DOIUrl":null,"url":null,"abstract":"<div><p>Bessenrodt and Ono initially found the strict log-subadditivity of partition function <i>p</i>(<i>n</i>), that is, <span>\\(p(a+b)&lt; p(a)p(b)\\)</span> for <span>\\(a,b&gt;1\\)</span> and <span>\\(a+b&gt;9\\)</span>. Many other important partition statistics are proved to enjoy similar properties. Lovejoy introduced the overpartition rank as an analog of Dyson’s rank for partitions from the <i>q</i>-series perspective. Let <span>\\({\\overline{N}}(a,c,n)\\)</span> denote the number of overpartitions with rank congruent to <i>a</i> modulo <i>c</i>. Ciolan computed the asymptotic formula of <span>\\({\\overline{N}}(a,c,n)\\)</span> and showed that <span>\\({\\overline{N}}(a, c, n) &gt; {\\overline{N}}(b, c, n)\\)</span> for <span>\\(0\\le a&lt;b\\le \\lfloor \\frac{c}{2}\\rfloor \\)</span> and <i>n</i> large enough if <span>\\(c\\ge 7\\)</span>. In this paper, we derive an upper bound and a lower bound of <span>\\({\\overline{N}}(a,c,n)\\)</span> for each <span>\\(c\\ge 3\\)</span> by using the asymptotics due to Ciolan. Consequently, we establish the strict log-subadditivity of <span>\\({\\overline{N}}(a,c,n)\\)</span> analogous to the partition function <i>p</i>(<i>n</i>).</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strict Log-Subadditivity for Overpartition Rank\",\"authors\":\"Helen W. J. Zhang,&nbsp;Ying Zhong\",\"doi\":\"10.1007/s00026-023-00643-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bessenrodt and Ono initially found the strict log-subadditivity of partition function <i>p</i>(<i>n</i>), that is, <span>\\\\(p(a+b)&lt; p(a)p(b)\\\\)</span> for <span>\\\\(a,b&gt;1\\\\)</span> and <span>\\\\(a+b&gt;9\\\\)</span>. Many other important partition statistics are proved to enjoy similar properties. Lovejoy introduced the overpartition rank as an analog of Dyson’s rank for partitions from the <i>q</i>-series perspective. Let <span>\\\\({\\\\overline{N}}(a,c,n)\\\\)</span> denote the number of overpartitions with rank congruent to <i>a</i> modulo <i>c</i>. Ciolan computed the asymptotic formula of <span>\\\\({\\\\overline{N}}(a,c,n)\\\\)</span> and showed that <span>\\\\({\\\\overline{N}}(a, c, n) &gt; {\\\\overline{N}}(b, c, n)\\\\)</span> for <span>\\\\(0\\\\le a&lt;b\\\\le \\\\lfloor \\\\frac{c}{2}\\\\rfloor \\\\)</span> and <i>n</i> large enough if <span>\\\\(c\\\\ge 7\\\\)</span>. In this paper, we derive an upper bound and a lower bound of <span>\\\\({\\\\overline{N}}(a,c,n)\\\\)</span> for each <span>\\\\(c\\\\ge 3\\\\)</span> by using the asymptotics due to Ciolan. Consequently, we establish the strict log-subadditivity of <span>\\\\({\\\\overline{N}}(a,c,n)\\\\)</span> analogous to the partition function <i>p</i>(<i>n</i>).</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00643-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00643-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Besenrodt和Ono最初发现了配分函数p(n)的严格对数次可加性,即\(p(a+b)<;p(a)p(b)\)和\(a+b>;9\)。许多其他重要的分区统计被证明具有类似的性质。Lovejoy从q级数的角度引入了过度分区秩,作为戴森分区秩的模拟。设\({\overline{N}}(a,c,N)\)表示秩与模c全等的过分区的数量。Ciolan计算了\(}\overline{N}}(a,c,N)\)的渐近公式,并证明\({;{\overline{N}}(b,c,N)\)用于\(0\le a<;b\lfloor\frac{c}{2}\lfloor\)并且N足够大如果\(c\ge 7\)。在本文中,我们通过使用Ciolan引起的渐近性,导出了每个\(c\ge3\)的\({\overline{N}})(a,c,N)\)的上界和下界。因此,我们建立了类似于配分函数p(N)的\({\overline{N}}(a,c,N)\)的严格对数子可加性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strict Log-Subadditivity for Overpartition Rank

Bessenrodt and Ono initially found the strict log-subadditivity of partition function p(n), that is, \(p(a+b)< p(a)p(b)\) for \(a,b>1\) and \(a+b>9\). Many other important partition statistics are proved to enjoy similar properties. Lovejoy introduced the overpartition rank as an analog of Dyson’s rank for partitions from the q-series perspective. Let \({\overline{N}}(a,c,n)\) denote the number of overpartitions with rank congruent to a modulo c. Ciolan computed the asymptotic formula of \({\overline{N}}(a,c,n)\) and showed that \({\overline{N}}(a, c, n) > {\overline{N}}(b, c, n)\) for \(0\le a<b\le \lfloor \frac{c}{2}\rfloor \) and n large enough if \(c\ge 7\). In this paper, we derive an upper bound and a lower bound of \({\overline{N}}(a,c,n)\) for each \(c\ge 3\) by using the asymptotics due to Ciolan. Consequently, we establish the strict log-subadditivity of \({\overline{N}}(a,c,n)\) analogous to the partition function p(n).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信