{"title":"模糊锥赋范空间中的$mathcal{I}$-收敛性","authors":"A. C. Guler","doi":"10.22130/SCMA.2021.526111.916","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to define and study the concept of $mathcal{I}$-convergence in fuzzy cone normed space which is a generalization of R. Saadati and S. M. Vaezpour type fuzzy normal space. We also obtained some basic properties of $mathcal{I}$-convergence. In fuzzy cone normed space, $mathcal{I}$-limit point and $mathcal{I}$-cluster point were defined and studied.","PeriodicalId":38924,"journal":{"name":"Communications in Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$mathcal{I}$-convergence in Fuzzy Cone Normed Spaces\",\"authors\":\"A. C. Guler\",\"doi\":\"10.22130/SCMA.2021.526111.916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to define and study the concept of $mathcal{I}$-convergence in fuzzy cone normed space which is a generalization of R. Saadati and S. M. Vaezpour type fuzzy normal space. We also obtained some basic properties of $mathcal{I}$-convergence. In fuzzy cone normed space, $mathcal{I}$-limit point and $mathcal{I}$-cluster point were defined and studied.\",\"PeriodicalId\":38924,\"journal\":{\"name\":\"Communications in Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22130/SCMA.2021.526111.916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2021.526111.916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
本文的目的是定义和研究模糊锥赋范空间中$mathcal{I}$-收敛的概念,它是R. Saadati和S. M. Vaezpour型模糊正规空间的推广。我们还得到了$mathcal{I}$-收敛的一些基本性质。在模糊锥赋范空间中,定义并研究了$mathcal{I}$-极限点和$mathcal{I}$-聚类点。
$mathcal{I}$-convergence in Fuzzy Cone Normed Spaces
The aim of this paper is to define and study the concept of $mathcal{I}$-convergence in fuzzy cone normed space which is a generalization of R. Saadati and S. M. Vaezpour type fuzzy normal space. We also obtained some basic properties of $mathcal{I}$-convergence. In fuzzy cone normed space, $mathcal{I}$-limit point and $mathcal{I}$-cluster point were defined and studied.