关于有限群连接图的一些结果

IF 0.7 Q2 MATHEMATICS
Zahara Bahrami, B. Taeri
{"title":"关于有限群连接图的一些结果","authors":"Zahara Bahrami, B. Taeri","doi":"10.22108/IJGT.2020.123287.1625","DOIUrl":null,"url":null,"abstract":"‎Let $G$ be a finite group which is not cyclic of prime power order‎. ‎The join graph $Delta(G)$ of $G$ is a graph whose vertex set is the set of all proper subgroups of $G$‎, ‎which are not contained in the Frattini subgroup $G$ and two distinct vertices $H$ and $K$ are adjacent if and only if $G=langle H‎, ‎Krangle$‎. ‎Among other results‎, ‎we show that if $G$ is a finite cyclic group and $H$ is a finite group such that $Delta(G)congDelta(H)$‎, ‎then $H$ is cyclic‎. ‎Also we prove that $Delta(G)congDelta(A_5)$ if and only if $Gcong A_5$‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":"10 1","pages":"175-186"},"PeriodicalIF":0.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on the join graph of finite groups\",\"authors\":\"Zahara Bahrami, B. Taeri\",\"doi\":\"10.22108/IJGT.2020.123287.1625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎Let $G$ be a finite group which is not cyclic of prime power order‎. ‎The join graph $Delta(G)$ of $G$ is a graph whose vertex set is the set of all proper subgroups of $G$‎, ‎which are not contained in the Frattini subgroup $G$ and two distinct vertices $H$ and $K$ are adjacent if and only if $G=langle H‎, ‎Krangle$‎. ‎Among other results‎, ‎we show that if $G$ is a finite cyclic group and $H$ is a finite group such that $Delta(G)congDelta(H)$‎, ‎then $H$ is cyclic‎. ‎Also we prove that $Delta(G)congDelta(A_5)$ if and only if $Gcong A_5$‎.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":\"10 1\",\"pages\":\"175-186\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2020.123287.1625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2020.123287.1625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$G$是一个非素数幂次循环的有限群。$G$的连接图$Delta(G)$是这样一个图,其顶点集是$G$ $的所有不包含在Frattini子群$G$中的固有子群的集合,并且两个不同的顶点$H$和$K$相邻当且仅当$G=langle H$, $ Krangle$ $。在其他结果中,我们证明了如果$G$是一个有限循环群,而$H$是一个有限群,使得$Delta(G)小于$Delta(H)$,则$H$是循环的。我们还证明了$Delta(G) condelta (A_5)$当且仅当$Gcong A_5$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on the join graph of finite groups
‎Let $G$ be a finite group which is not cyclic of prime power order‎. ‎The join graph $Delta(G)$ of $G$ is a graph whose vertex set is the set of all proper subgroups of $G$‎, ‎which are not contained in the Frattini subgroup $G$ and two distinct vertices $H$ and $K$ are adjacent if and only if $G=langle H‎, ‎Krangle$‎. ‎Among other results‎, ‎we show that if $G$ is a finite cyclic group and $H$ is a finite group such that $Delta(G)congDelta(H)$‎, ‎then $H$ is cyclic‎. ‎Also we prove that $Delta(G)congDelta(A_5)$ if and only if $Gcong A_5$‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信