3-反循环有向图是α-双光子和BE双光子

Lucas Freitas, Orlando Lee
{"title":"3-反循环有向图是α-双光子和BE双光子","authors":"Lucas Freitas, Orlando Lee","doi":"10.4236/ojdm.2022.123003","DOIUrl":null,"url":null,"abstract":"Let $D$ be a digraph. A subset $S$ of $V(D)$ is a stable set if every pair of vertices in $S$ is non-adjacent in $D$. A collection of disjoint paths $\\mathcal{P}$ of $D$ is a path partition of $V(D)$, if every vertex in $V(D)$ is exactly on a path of $\\mathcal{P}$. We say that a stable set $S$ and a path partition $\\mathcal{P}$ are orthogonal if each path of $P$ contains exactly one vertex of $S$. A digraph $D$ satisfies the $\\alpha$-property if for every maximum stable set $S$ of $D$, there exists a path partition $\\mathcal{P}$ such that $S$ and $\\mathcal{P}$ are orthogonal. A digraph $D$ is $\\alpha$-diperfect if every induced subdigraph of $D$ satisfies the $\\alpha$-property. In 1982, Claude Berge proposed a characterization for $\\alpha$-diperfect digraphs in terms of forbidden anti-directed odd cycles. In 2018, Sambinelli, Silva and Lee proposed a similar conjecture. A digraph $D$ satisfies the Begin-End-property or BE-property if for every maximum stable set $S$ of $D$, there exists a path partition $\\mathcal{P}$ such that (i) $S$ and $\\mathcal{P}$ are orthogonal and (ii) for each path $P \\in \\mathcal{P}$, either the start or the end of $P$ belongs to $S$. A digraph $D$ is BE-diperfect if every induced subdigraph of $D$ satisfies the BE-property. Sambinelli, Silva and Lee proposed a characterization for BE-diperfect digraphs in terms of forbidden blocking odd cycles. In this paper, we verified both conjectures for $3$-anti-circulant digraphs. We also present some structural results for $\\alpha$-diperfect and BE-diperfect digraphs.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3-Anti-Circulant Digraphs Are <i>α</i>-Diperfect and BE-Diperfect\",\"authors\":\"Lucas Freitas, Orlando Lee\",\"doi\":\"10.4236/ojdm.2022.123003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D$ be a digraph. A subset $S$ of $V(D)$ is a stable set if every pair of vertices in $S$ is non-adjacent in $D$. A collection of disjoint paths $\\\\mathcal{P}$ of $D$ is a path partition of $V(D)$, if every vertex in $V(D)$ is exactly on a path of $\\\\mathcal{P}$. We say that a stable set $S$ and a path partition $\\\\mathcal{P}$ are orthogonal if each path of $P$ contains exactly one vertex of $S$. A digraph $D$ satisfies the $\\\\alpha$-property if for every maximum stable set $S$ of $D$, there exists a path partition $\\\\mathcal{P}$ such that $S$ and $\\\\mathcal{P}$ are orthogonal. A digraph $D$ is $\\\\alpha$-diperfect if every induced subdigraph of $D$ satisfies the $\\\\alpha$-property. In 1982, Claude Berge proposed a characterization for $\\\\alpha$-diperfect digraphs in terms of forbidden anti-directed odd cycles. In 2018, Sambinelli, Silva and Lee proposed a similar conjecture. A digraph $D$ satisfies the Begin-End-property or BE-property if for every maximum stable set $S$ of $D$, there exists a path partition $\\\\mathcal{P}$ such that (i) $S$ and $\\\\mathcal{P}$ are orthogonal and (ii) for each path $P \\\\in \\\\mathcal{P}$, either the start or the end of $P$ belongs to $S$. A digraph $D$ is BE-diperfect if every induced subdigraph of $D$ satisfies the BE-property. Sambinelli, Silva and Lee proposed a characterization for BE-diperfect digraphs in terms of forbidden blocking odd cycles. In this paper, we verified both conjectures for $3$-anti-circulant digraphs. We also present some structural results for $\\\\alpha$-diperfect and BE-diperfect digraphs.\",\"PeriodicalId\":61712,\"journal\":{\"name\":\"离散数学期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"离散数学期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/ojdm.2022.123003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ojdm.2022.123003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

让$D$是一个有向图。如果$S$中的每对顶点在$D$中是不相邻的,则$V(D)$的子集$S$是稳定集。$D$的不相交路径$\mathcal{P}$的集合是$V(D)$的路径分区,如果$V(D)$中的每个顶点都恰好在$\mathical{P}$的路径上。我们说稳定集$S$和路径分区$\mathcal{P}$是正交的,如果$P$的每条路径恰好包含$S$的一个顶点。有向图$D$满足$\alpha$-性质,如果对于$D$的每个最大稳定集$S$,存在一个路径分区$\mathcal{P}$,使得$S$和$\mathcal{P}$正交。如果$D$的每个诱导子图都满足$\alpha$-性质,则有向图$D$是$\alpa$-完全有向图。1982年,Claude Berge提出了$\alpha$-二完全有向图的一个特征化,用禁止的反定向奇环来表示。2018年,桑比内利、席尔瓦和李提出了类似的猜想。有向图$D$满足Begin-End性质或BE性质,如果对于$D$的每个最大稳定集$S$,存在一个路径分区$\mathcal{P}$,使得(i)$S$和$\mathical{P}$正交,并且(ii)对于每个路径$P\in\mathcal{P}$,$P$的开始或结束都属于$S$。如果$D$的每个诱导子图都满足BE性质,则有向图$D$是BE完全图。Sambinelli、Silva和Lee提出了用禁止阻塞奇环刻画BE完全有向图的一个性质。在本文中,我们验证了$3$-反循环有向图的两个猜想。我们还给出了$\alpha$-双完全和BE双完全有向图的一些结构结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3-Anti-Circulant Digraphs Are α-Diperfect and BE-Diperfect
Let $D$ be a digraph. A subset $S$ of $V(D)$ is a stable set if every pair of vertices in $S$ is non-adjacent in $D$. A collection of disjoint paths $\mathcal{P}$ of $D$ is a path partition of $V(D)$, if every vertex in $V(D)$ is exactly on a path of $\mathcal{P}$. We say that a stable set $S$ and a path partition $\mathcal{P}$ are orthogonal if each path of $P$ contains exactly one vertex of $S$. A digraph $D$ satisfies the $\alpha$-property if for every maximum stable set $S$ of $D$, there exists a path partition $\mathcal{P}$ such that $S$ and $\mathcal{P}$ are orthogonal. A digraph $D$ is $\alpha$-diperfect if every induced subdigraph of $D$ satisfies the $\alpha$-property. In 1982, Claude Berge proposed a characterization for $\alpha$-diperfect digraphs in terms of forbidden anti-directed odd cycles. In 2018, Sambinelli, Silva and Lee proposed a similar conjecture. A digraph $D$ satisfies the Begin-End-property or BE-property if for every maximum stable set $S$ of $D$, there exists a path partition $\mathcal{P}$ such that (i) $S$ and $\mathcal{P}$ are orthogonal and (ii) for each path $P \in \mathcal{P}$, either the start or the end of $P$ belongs to $S$. A digraph $D$ is BE-diperfect if every induced subdigraph of $D$ satisfies the BE-property. Sambinelli, Silva and Lee proposed a characterization for BE-diperfect digraphs in terms of forbidden blocking odd cycles. In this paper, we verified both conjectures for $3$-anti-circulant digraphs. We also present some structural results for $\alpha$-diperfect and BE-diperfect digraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信