使用试点数据进行观测研究的功率分析以估计动态治疗方案

Eric J Rose, Erica E M Moodie, Susan Shortreed
{"title":"使用试点数据进行观测研究的功率分析以估计动态治疗方案","authors":"Eric J Rose, Erica E M Moodie, Susan Shortreed","doi":"10.1353/obs.2023.a906627","DOIUrl":null,"url":null,"abstract":"<p><p>Significant attention has been given to developing data-driven methods for tailoring patient care based on individual patient characteristics. Dynamic treatment regimes formalize this approach through a sequence of decision rules that map patient information to a suggested treatment. The data for estimating and evaluating treatment regimes are ideally gathered through the use of Sequential Multiple Assignment Randomized Trials (SMARTs), though longitudinal observational studies are commonly used due to the potentially prohibitive costs of conducting a SMART. Observational studies are typically powered for simple comparisons of fixed treatment sequences; a priori power or sample size calculations for tailored strategies are rarely if ever undertaken. This has lead to many studies that fail to find a statistically significant benefit to tailoring treatment. We develop power analyses for the estimation of dynamic treatment regimes from observational studies. Our approach uses pilot data to estimate the power for comparing the value of the optimal regime, i.e., the expected outcome if all patients in the population were treated by following the optimal regime, with a known comparison mean. This allows for calculations that ensure a study has sufficient power to detect the need for tailoring, should it be present. Our approach also ensures the value of the estimated optimal treatment regime has a high probability of being within a range of the value of the true optimal regime, set a priori. We examine the performance of the proposed procedure with a simulation study and use it to size a study for reducing depressive symptoms using data from electronic health records.</p>","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245299/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using Pilot Data for Power Analysis of Observational Studies for the Estimation of Dynamic Treatment Regimes.\",\"authors\":\"Eric J Rose, Erica E M Moodie, Susan Shortreed\",\"doi\":\"10.1353/obs.2023.a906627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Significant attention has been given to developing data-driven methods for tailoring patient care based on individual patient characteristics. Dynamic treatment regimes formalize this approach through a sequence of decision rules that map patient information to a suggested treatment. The data for estimating and evaluating treatment regimes are ideally gathered through the use of Sequential Multiple Assignment Randomized Trials (SMARTs), though longitudinal observational studies are commonly used due to the potentially prohibitive costs of conducting a SMART. Observational studies are typically powered for simple comparisons of fixed treatment sequences; a priori power or sample size calculations for tailored strategies are rarely if ever undertaken. This has lead to many studies that fail to find a statistically significant benefit to tailoring treatment. We develop power analyses for the estimation of dynamic treatment regimes from observational studies. Our approach uses pilot data to estimate the power for comparing the value of the optimal regime, i.e., the expected outcome if all patients in the population were treated by following the optimal regime, with a known comparison mean. This allows for calculations that ensure a study has sufficient power to detect the need for tailoring, should it be present. Our approach also ensures the value of the estimated optimal treatment regime has a high probability of being within a range of the value of the true optimal regime, set a priori. We examine the performance of the proposed procedure with a simulation study and use it to size a study for reducing depressive symptoms using data from electronic health records.</p>\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2023.a906627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.a906627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:开发基于个体患者特征的数据驱动方法来定制患者护理受到了极大的关注。动态治疗方案通过一系列将患者信息映射到建议治疗的决策规则将这种方法形式化。用于估计和评估治疗方案的数据最好通过使用顺序多任务随机试验(SMARTs)收集,尽管由于进行SMART的潜在过高成本,通常使用纵向观察性研究。观察性研究通常用于固定治疗顺序的简单比较;对于量身定制的策略,很少进行先验幂或样本大小计算。这导致许多研究未能发现定制治疗在统计上的显著益处。我们对观察性研究的动态治疗方案进行了功率分析。我们的方法使用试点数据来估计比较最优方案值的功率,即,如果人群中的所有患者都按照最优方案进行治疗,并具有已知的比较平均值,则预期结果。这允许计算,以确保研究有足够的能力来检测裁剪的需要,如果它存在的话。我们的方法还确保估计的最优治疗方案的值有很高的概率在真正的最优方案的值范围内,先验设置。我们通过一项模拟研究来检验所建议的程序的性能,并利用电子健康记录的数据来确定减少抑郁症状的研究的规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Pilot Data for Power Analysis of Observational Studies for the Estimation of Dynamic Treatment Regimes.

Significant attention has been given to developing data-driven methods for tailoring patient care based on individual patient characteristics. Dynamic treatment regimes formalize this approach through a sequence of decision rules that map patient information to a suggested treatment. The data for estimating and evaluating treatment regimes are ideally gathered through the use of Sequential Multiple Assignment Randomized Trials (SMARTs), though longitudinal observational studies are commonly used due to the potentially prohibitive costs of conducting a SMART. Observational studies are typically powered for simple comparisons of fixed treatment sequences; a priori power or sample size calculations for tailored strategies are rarely if ever undertaken. This has lead to many studies that fail to find a statistically significant benefit to tailoring treatment. We develop power analyses for the estimation of dynamic treatment regimes from observational studies. Our approach uses pilot data to estimate the power for comparing the value of the optimal regime, i.e., the expected outcome if all patients in the population were treated by following the optimal regime, with a known comparison mean. This allows for calculations that ensure a study has sufficient power to detect the need for tailoring, should it be present. Our approach also ensures the value of the estimated optimal treatment regime has a high probability of being within a range of the value of the true optimal regime, set a priori. We examine the performance of the proposed procedure with a simulation study and use it to size a study for reducing depressive symptoms using data from electronic health records.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信