Fernando Darío Almeida García, H. Mora, G. Fraidenraich, J. Filho
{"title":"威布尔分布地杂波中指数目标的平方律检测","authors":"Fernando Darío Almeida García, H. Mora, G. Fraidenraich, J. Filho","doi":"10.1109/lgrs.2020.3009304","DOIUrl":null,"url":null,"abstract":"Modern radar systems use square-law detectors to search and track fluctuating targets embedded in Weibull-distributed ground clutter. However, the theoretical performance analysis of square-law detectors in the presence of Weibull clutter leads to cumbersome mathematical formulations. Some studies have circumvented this problem by using approximations or mathematical artifacts to simplify calculations. In this work, we derive a closed-form and exact expression for the probability of detection (PD) of a square-law detector in the presence of exponential targets and Weibull-distributed ground clutter, given in terms of the Fox H-function. Unlike previous studies, no approximations nor simplifying assumptions are made throughout our analysis. Furthermore, we derive a fast convergent series for the referred PD by exploiting the orthogonal selection of poles in Cauchy’s residue theorem. In passing, we also obtain closed-form solutions and series representations for the probability density function and the cumulative distribution function of the sum statistics that govern the output of a square-law detector. Numerical results and Monte Carlo simulations corroborate the validity of our expressions.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1956-1960"},"PeriodicalIF":4.0000,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3009304","citationCount":"9","resultStr":"{\"title\":\"Square-Law Detection of Exponential Targets in Weibull-Distributed Ground Clutter\",\"authors\":\"Fernando Darío Almeida García, H. Mora, G. Fraidenraich, J. Filho\",\"doi\":\"10.1109/lgrs.2020.3009304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern radar systems use square-law detectors to search and track fluctuating targets embedded in Weibull-distributed ground clutter. However, the theoretical performance analysis of square-law detectors in the presence of Weibull clutter leads to cumbersome mathematical formulations. Some studies have circumvented this problem by using approximations or mathematical artifacts to simplify calculations. In this work, we derive a closed-form and exact expression for the probability of detection (PD) of a square-law detector in the presence of exponential targets and Weibull-distributed ground clutter, given in terms of the Fox H-function. Unlike previous studies, no approximations nor simplifying assumptions are made throughout our analysis. Furthermore, we derive a fast convergent series for the referred PD by exploiting the orthogonal selection of poles in Cauchy’s residue theorem. In passing, we also obtain closed-form solutions and series representations for the probability density function and the cumulative distribution function of the sum statistics that govern the output of a square-law detector. Numerical results and Monte Carlo simulations corroborate the validity of our expressions.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"18 1\",\"pages\":\"1956-1960\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2020-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/lgrs.2020.3009304\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/lgrs.2020.3009304\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2020.3009304","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Square-Law Detection of Exponential Targets in Weibull-Distributed Ground Clutter
Modern radar systems use square-law detectors to search and track fluctuating targets embedded in Weibull-distributed ground clutter. However, the theoretical performance analysis of square-law detectors in the presence of Weibull clutter leads to cumbersome mathematical formulations. Some studies have circumvented this problem by using approximations or mathematical artifacts to simplify calculations. In this work, we derive a closed-form and exact expression for the probability of detection (PD) of a square-law detector in the presence of exponential targets and Weibull-distributed ground clutter, given in terms of the Fox H-function. Unlike previous studies, no approximations nor simplifying assumptions are made throughout our analysis. Furthermore, we derive a fast convergent series for the referred PD by exploiting the orthogonal selection of poles in Cauchy’s residue theorem. In passing, we also obtain closed-form solutions and series representations for the probability density function and the cumulative distribution function of the sum statistics that govern the output of a square-law detector. Numerical results and Monte Carlo simulations corroborate the validity of our expressions.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.